Search results for "Dark-Matter"

showing 10 items of 22 documents

New horizons for fundamental physics with LISA

2022

K. G. Arun et al.

AstrofísicaPROTOPLANET MIGRATIONFísica-Modelos matemáticosPhysics and Astronomy (miscellaneous)gr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)GRAVITATIONAL-WAVEShorizonFundamental physicGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGravitational wavesLIGO (Observatory)Tests of general relativitySettore FIS/05 - Astronomia e AstrofisicaDARK-MATTERFísica matemáticaKOZAI MECHANISMHigh Energy PhysicsGENERAL-RELATIVITYFundamental physics; Gravitational waves; LISA; Tests of general relativityFundamental physicsPRIMORDIAL BLACK-HOLESLISAScience & TechnologyGeneral Relativity and Cosmology83CXXPhysicsgravitation: interactiongravitational radiationFísicaCompactQUANTUM-GRAVITYPhysical SciencesAstronomia[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]fundamental physics; gravitational waves; LISA; test of general relativityMODIFIED GRAVITYtest of general relativityGravitational waveMULTIPOLE MOMENTSHUBBLE CONSTANT
researchProduct

Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

2013

A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km(3) neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the resul…

AstrofísicaParticle physicsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesAstrophysicsAstrophysicsNeutrino telescope01 natural sciences7. Clean energylaw.inventionMUONSTelescopeGAMMA-RAY HAZESIGNALSlaw0103 physical sciencesDARK-MATTER14. Life underwaterFermi BubblesKM3NeT010303 astronomy & astrophysicsUNDERWATER CHERENKOV NEUTRINO TELESCOPESNeutrino telescope; Fermi Bubbles; KM3NeTHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayAstronomy and AstrophysicsINGENIERIA TELEMATICAkm3net; fermi bubbles; neutrino telescopeKM3NeTNeutrino detector[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaFermi BubbleFermi Gamma-ray Space TelescopeAstroparticle Physics
researchProduct

(Standard model) universe dominated by the right matter

2009

14 pages, 3 figures. References on late time enthropy release included, several points clarified. PACS numbers: 14.60.Pq, 98.80.Cq. ArXiv pre-print available at http://arxiv.org/abs/0806.4389

AstrofísicaPhysicsNuclear and High Energy PhysicsParticle physicsGrand-Unified-TheoryDark-MatterHigh Energy Physics::PhenomenologyElectroweak interactionDark matterBaryogenesisFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsTime Entropy ProductionBaryogenesisBaryon asymmetryDecaying ParticlesConstraintsHigh Energy Physics::ExperimentGravitinoNeutrinoNeutrino MassNeutrino oscillationPhenomenology (particle physics)Inflationary UniversePhysical Review D
researchProduct

Revealing the structure of the lensed quasar Q 0957+561. I. Accretion disk size

2021

We thank the anonymous referee for the helpful comments, and constructive remarks on this manuscript. We thank the GLENDAMA project for making publicly available the monitoring data of Q 0957+561. C.F. gratefully acknowledges the financial support from Tel Aviv University and University of Haifa through a DFG grant HA3555-14/1. E.M. and J.A.M are supported by the Spanish MINECO with the grants AYA2016- 79104-C3-1-P and AYA2016-79104-C3-3-P. J.A.M. is also supported from the Generalitat Valenciana project of excellence Prometeo/2020/085. J.J.V. is supported by the project AYA2017-84897-P financed by the Spanish Ministerio de Economia y Competividad and by the Fondo Europeo de Desarrollo Regi…

Brightnessmagnificationtime-delayFOS: Physical sciencesAstrophysicsgravitational lensing: microAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensingvlbi observationsmicro [Gravitational lensing]accretionpeculiar velocityindividual: Q 0957+561 [Quasars]Astrophysics::Galaxy AstrophysicsPhysicsquasars: individual: q 0957+561robust determinationaccretion disksvelocity dispersionq0957+561Astronomy and AstrophysicsQuasarAccretion accretion disksLight curveAstrophysics - Astrophysics of GalaxiesGalaxyAccretion (astrophysics)StarsGravitational lensdark-matterx-raySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary Astrophysicsoptical continuum emission
researchProduct

Shining primordial black holes

2021

We study the well-motivated mixed dark matter (DM) scenario composed of a dominant thermal WIMP, highlighting the case of $SU(2)_L$ triplet fermion "winos", with a small fraction of primordial black holes (PBHs). After the wino kinetic decoupling, the DM particles are captured by PBHs leading to the presence of PBHs with dark minihalos in the Milky Way today. The strongest constraints for the wino DM come from the production of narrow line gamma rays from wino annihilation in the Galactic Center. We analyse in detail the viability of the mixed wino DM scenario, and determine the constraints on the fraction of DM in PBHs assuming a cored halo profile in the Milky Way. We show that already wi…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Milky WayAstrophysics::High Energy Astrophysical PhenomenaastrofysiikkaDARK-MATTER ANNIHILATIONFOS: Physical sciencesmustat aukotPrimordial black holeAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicskosmologia7. Clean energy01 natural sciences114 Physical sciencesGeneral Relativity and Quantum Cosmologypimeä aineHigh Energy Physics - Phenomenology (hep-ph)WIMP0103 physical sciences010306 general physicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilation010308 nuclear & particles physicsGalactic CenterGAMMA-RAYSCONSTRAINTSFermionHigh Energy Physics - PhenomenologyMixed dark matterMILKYHaloAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Physics beyond colliders at CERN: beyond the Standard Model working group report

2019

The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10–20 years on the international landscape.

HIGH-ENERGYHigh energyaxionsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsPhysics beyond the Standard Model01 natural sciencesHigh Energy Physics - Experimentdark matter: couplingHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)photon: coupling[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental Techniquesphysics.ins-detPHOTON VETO DETECTORdark sectorPhysicsLarge Hadron Colliderneutrino: pair productionnew physics: search forlepton: flavor: violationdark matter: pair productionhep-phInstrumentation and Detectors (physics.ins-det)photon: invisible decayNEUTRAL HEAVY-LEPTONSHigh Energy Physics - PhenomenologyLIGHTCERN LHC Collphoton: mixingSystems engineeringParticle Physics - ExperimentNuclear and High Energy PhysicsCERN LabacceleratorPHI-MESON DECAYSExploratory researchFOS: Physical sciences530dark matterStandard ModelELECTRIC-DIPOLE MOMENTacceleratorsVECTOR GAUGE BOSONSEARCH0103 physical sciencesDARK-MATTERddc:530K: semileptonic decay[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]particle physics010306 general physicsvector boson: postulated particleCP CONSERVATIONbeyond standard ModelParticle Physics - Phenomenologylepton: universalityphoton: hidden sectorbeyond standard Model; dark matter; dark sector; axions; particle physics; acceleratorshep-ex010308 nuclear & particles physicscoupling constantCERN SPSlandscapeAccelerators and Storage Ringsdark matter: mediation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Fundamental physicsPhysics::Accelerator Physicsaxion: solarJournal of Physics G: Nuclear and Particle Physics
researchProduct

Light Dark Matter Search with Ionization Signals in XENON1T

2019

We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keVee, we observe <1 event/(tonne day keVee), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses mχ within 3–6 GeV/c2, DM-electron scattering for mχ>30 MeV/c2, a…

Light Dark Matter TPC Ionization Axion-Like particlesCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonFOS: Physical sciencesGeneral Physics and AstronomyS030DI5S029AECAstrophysics01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)S030DE5Ionization0103 physical sciencesionization[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsAbsorption (electromagnetic radiation)Light dark matterscintillation counterPhysicsDark Matter WIMP Dark-Matter detectors Time-projection chamber detectorsScintillationScatteringbackgrounddark matter: massphotonscatteringS029HPHS030DN5* Automatic Keywords *Scintillation counterElementary Particles and Fieldsaxion-like particles[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Event (particle physics)absorptionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A search for neutron to mirror-neutron oscillations using the nEDM apparatus at PSI

2021

It has been proposed that there could be a mirror copy of the standard model particles, restoring the parity symmetry in the weak interaction on the global level. Oscillations between a neutral standard model particle, such as the neutron, and its mirror counterpart could potentially answer various standing issues in physics today. Astrophysical studies and terrestrial experiments led by ultracold neutron storage measurements have investigated neutron to mirror-neutron oscillations and imposed constraints on the theoretical parameters. Recently, further analysis of these ultracold neutron storage experiments has yielded statistically significant anomalous signals that may be interpreted as …

Nuclear and High Energy PhysicsNeutron electric dipole momentmedia_common.quotation_subjectmagnetic fieldWeak interaction[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Astronomy & Astrophysics01 natural sciences7. Clean energyAsymmetryrotationPhysics Particles & FieldsELECTRIC-DIPOLE MOMENTweak interaction0103 physical sciencesDark matterDARK-MATTERNeutron010306 general physicsnumerical calculationsmirrorNuclear mattermedia_commonoscillation: timePhysicsn: electric momentProperties of neutrons Ultracold neutrons Nuclear matter Mirror matter Dark matter Particle symmetriesScience & TechnologyProperties of neutronsParticle symmetries010308 nuclear & particles physicsparity: symmetryPhysicsNuclear matter[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]lcsh:QC1-999Mirror matterMagnetic fieldMODELPhysics Nuclear[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physical SciencesUltracold neutronsAtomic physicsUltracold neutronsMirror matterasymmetrylcsh:PhysicsPhysics Letters B
researchProduct

The Hunt for New Physics at the Large Hadron Collider

2010

233 páginas.-- AHEP Group: et al..-- El Pdf del artículo es la versión pre-print: arXiv.1001.2693v1.-- Trabajo presentado al "The International Workshop on Beyond the Standard Model Physics and LHC Signatures (BSM-LHC) celebrado en Boston (USA) del 2 al 4 de junio de 2009.

Nuclear and High Energy PhysicsParticle physicsCold dark matterPhysics::Instrumentation and DetectorsPhysics beyond the Standard ModelFOS: Physical sciencesRANDALL-SUNDRUM MODEL01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)R-PARITY BREAKING0103 physical sciencesHigh Energy PhysicsANOMALOUS MAGNETIC-MOMENT010306 general physicsParticle Physics - PhenomenologyPhysicsEXPLICIT CP VIOLATIONDARK-MATTER DETECTIONLarge Hadron Collider010308 nuclear & particles physicsPhysicsElectroweak interactionHigh Energy Physics::PhenomenologyFísicaRENORMALIZATION-GROUP EQUATIONSHierarchy problemSupersymmetryAtomic and Molecular Physics and OpticsGRAND UNIFIED THEORIESSUPERSYMMETRIC STANDARD MODELHidden sectorExtra dimensionsHigh Energy Physics - PhenomenologyMINIMAL FLAVOR VIOLATION[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]PhenomenologyHigh Energy Physics::ExperimentHIGGS-BOSON PRODUCTION
researchProduct

Extending the DAMA annual-modulation region by inclusion of the uncertainties in astrophysical velocities

1999

The original annual-modulation region, singled out by the DAMA/NaI experiment for direct detection of WIMPs, is extended by taking into account the uncertainties in the galactic astrophysical velocities. Also the effect due to a possible bulk rotation for the dark matter halo is considered. We find that the range for the WIMP mass becomes 30 GeV < m_chi < 130 GeV at 1-sigma C.L. with a further extension in the upper bound, when a possible bulk rotation of the dark matter halo is taken into account. We show that the DAMA results, when interpreted in the framework of the Minimal Supersymmetric extension of the Standard Model, are consistent with a relic neutralino as a dominant componen…

Nuclear and High Energy PhysicsParticle physicsDAMA/LIBRACold dark matterDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysicsSettore FIS/04 - Fisica Nucleare e SubnucleareGalactic haloHigh Energy Physics - Phenomenology (hep-ph)DARK-MATTERSUPERSYMMETRYLight dark matterPhysicsDARK-MATTER; Dark matter annual modulation signature; SUPERSYMMETRY; SIGNAL;Settore FIS/01 - Fisica SperimentaleAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsSIGNALDark matter haloHigh Energy Physics - PhenomenologyDark matter annual modulation signatureWeakly interacting massive particlesDAMA/NaI
researchProduct