Search results for "Data clustering"
showing 7 items of 27 documents
PGAC: A Parallel Genetic Algorithm for Data Clustering
2005
Cluster analysis is a valuable tool for exploratory pattern analysis, especially when very little a priori knowledge about the data is available. Distributed systems, based on high speed intranet connections, provide new tools in order to design new and faster clustering algorithms. Here, a parallel genetic algorithm for clustering called PGAC is described. The used strategy of parallelization is the island model paradigm where different populations of chromosomes (called demes) evolve locally to each processor and from time to time some individuals are moved from one deme to another. Experiments have been performed for testing the benefits of the parallelisation paradigm in terms of comput…
Incrementally Assessing Cluster Tendencies with a~Maximum Variance Cluster Algorithm
2003
A straightforward and efficient way to discover clustering tendencies in data using a recently proposed Maximum Variance Clustering algorithm is proposed. The approach shares the benefits of the plain clustering algorithm with regard to other approaches for clustering. Experiments using both synthetic and real data have been performed in order to evaluate the differences between the proposed methodology and the plain use of the Maximum Variance algorithm. According to the results obtained, the proposal constitutes an efficient and accurate alternative.
Twister Tries
2015
Many commonly used data-mining techniques utilized across research fields perform poorly when used for large data sets. Sequential agglomerative hierarchical non-overlapping clustering is one technique for which the algorithms’ scaling properties prohibit clustering of a large amount of items. Besides the unfavorable time complexity of O(n 2 ), these algorithms have a space complexity of O(n 2 ), which can be reduced to O(n) if the time complexity is allowed to rise to O(n 2 log2 n). In this paper, we propose the use of locality-sensitive hashing combined with a novel data structure called twister tries to provide an approximate clustering for average linkage. Our approach requires only lin…
Scalable Hierarchical Clustering: Twister Tries with a Posteriori Trie Elimination
2015
Exact methods for Agglomerative Hierarchical Clustering (AHC) with average linkage do not scale well when the number of items to be clustered is large. The best known algorithms are characterized by quadratic complexity. This is a generally accepted fact and cannot be improved without using specifics of certain metric spaces. Twister tries is an algorithm that produces a dendrogram (i.e., Outcome of a hierarchical clustering) which resembles the one produced by AHC, while only needing linear space and time. However, twister tries are sensitive to rare, but still possible, hash evaluations. These might have a disastrous effect on the final outcome. We propose the use of a metaheuristic algor…
Data Analysis and Bioinformatics
2007
Data analysis methods and techniques are revisited in the case of biological data sets. Particular emphasis is given to clustering and mining issues. Clustering is still a subject of active research in several fields such as statistics, pattern recognition, and machine learning. Data mining adds to clustering the complications of very large data-sets with many attributes of different types. And this is a typical situation in biology. Some cases studies are also described.
CLUSTERING INCOMPLETE SPECTRAL DATA WITH ROBUST METHODS
2018
Abstract. Missing value imputation is a common approach for preprocessing incomplete data sets. In case of data clustering, imputation methods may cause unexpected bias because they may change the underlying structure of the data. In order to avoid prior imputation of missing values the computational operations must be projected on the available data values. In this paper, we apply a robust nan-K-spatmed algorithm to the clustering problem on hyperspectral image data. Robust statistics, such as multivariate medians, are more insensitive to outliers than classical statistics relying on the Gaussian assumptions. They are, however, computationally more intractable due to the lack of closed-for…
GenClust: A genetic algorithm for clustering gene expression data
2005
Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a) a novel coding of the search space that is simple, …