Search results for "Dean"
showing 10 items of 278 documents
A Characterization of Bispecial Sturmian Words
2012
A finite Sturmian word w over the alphabet {a,b} is left special (resp. right special) if aw and bw (resp. wa and wb) are both Sturmian words. A bispecial Sturmian word is a Sturmian word that is both left and right special. We show as a main result that bispecial Sturmian words are exactly the maximal internal factors of Christoffel words, that are words coding the digital approximations of segments in the Euclidean plane. This result is an extension of the known relation between central words and primitive Christoffel words. Our characterization allows us to give an enumerative formula for bispecial Sturmian words. We also investigate the minimal forbidden words for the set of Sturmian wo…
The node-depth encoding
2008
The node-depth encoding has elements from direct and indirect encoding for trees which encodes trees by storing the depth of nodes in a list. Node-depth encoding applies specific search operators that is a typical characteristic for direct encodings. An investigation into the bias of the initialization process and the mutation operators of the node-depth encoding shows that the initialization process has a bias to solutions with small depths and diameters, and a bias towards stars. This investigation, also, shows that the mutation operators are unbiased. The performance of node-depth encoding is investigated for the bounded-diameter minimum spanning tree problem. The results are presented f…
Covering and differentiation
1995
Compactness of a conformal boundary of the Euclidean unit ball
2011
We study conformal metrics d‰ on the Euclidean unit ball B n : We assume that either the density ‰ associated with the metric d‰ satisfies a logarithmic volume growth condition for small balls or that ‰ satisfies a Harnack inequality and a suitable sub-Euclidean volume growth condition. We prove that the ‰-boundary @‰ B n is homeomorphic to S ni1 if and only if @‰ B n is compact. In the planar case, the compactness of @‰ B 2 is further equivalent to local connectivity of the ‰-boundary together with the boundedness of (B 2 ;d‰):
Fixed points in weak non-Archimedean fuzzy metric spaces
2011
Mihet [Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 159 (2008) 739-744] proved a theorem which assures the existence of a fixed point for fuzzy $\psi$-contractive mappings in the framework of complete non-Archimedean fuzzy metric spaces. Motivated by this, we introduce a notion of weak non-Archimedean fuzzy metric space and prove that the weak non-Archimedean fuzzy metric induces a Hausdorff topology. We utilize this new notion to obtain some common fixed point results for a pair of generalized contractive type mappings.
Continuous reformulations and heuristics for the Euclidean travelling salesperson problem
2008
We consider continuous reformulations of the Euclidean travelling salesperson problem (TSP), based on certain clustering problem formulations. These reformulations allow us to apply a generalisation with perturbations of the Weiszfeld algorithm in an attempt to find local approximate solutions to the Euclidean TSP.
On the structure of certain ultradistributions
2009
Let "o" be a nonempty open subset of the k-dimensional euclidean space Rk. In this paper we show that, if S is an ultradistribution in "o", belonging to a class of Roumieu type stable under differential operators, then there is a family f, 2 Nk 0, of elements of L1 loc("o") such that S is represented in the formP2Nk 0 D"a"f "a". Some other results on the structure of certain ultradistributions of Roumieu type are also given.
Uncalibrated Reconstruction: An Adaptation to Structured Light Vision
2003
Abstract Euclidean reconstruction from two uncalibrated stereoscopic views is achievable from the knowledge of geometrical constraints about the environment. Unfortunately, these constraints may be quite difficult to obtain. In this paper, we propose an approach based on structured lighting, which has the advantage of providing geometrical constraints independent of the scene geometry. Moreover, the use of structured light provides a unique solution to the tricky correspondence problem present in stereovision. The projection matrices are first computed by using a canonical representation, and a projective reconstruction is performed. Then, several constraints are generated from the image an…
A methodology to assess the intrinsic discriminative ability of a distance function and its interplay with clustering algorithms for microarray data …
2013
Abstract Background Clustering is one of the most well known activities in scientific investigation and the object of research in many disciplines, ranging from statistics to computer science. Following Handl et al., it can be summarized as a three step process: (1) choice of a distance function; (2) choice of a clustering algorithm; (3) choice of a validation method. Although such a purist approach to clustering is hardly seen in many areas of science, genomic data require that level of attention, if inferences made from cluster analysis have to be of some relevance to biomedical research. Results A procedure is proposed for the assessment of the discriminative ability of a distance functi…
Computing Euclidean Steiner trees over segments
2020
In the classical Euclidean Steiner minimum tree (SMT) problem, we are given a set of points in the Euclidean plane and we are supposed to find the minimum length tree that connects all these points, allowing the addition of arbitrary additional points. We investigate the variant of the problem where the input is a set of line segments. We allow these segments to have length 0, i.e., they are points and hence we generalize the classical problem. Furthermore, they are allowed to intersect such that we can model polygonal input. As in the GeoSteiner approach of Juhl et al. (Math Program Comput 10(2):487–532, 2018) for the classical case, we use a two-phase approach where we construct a superse…