Search results for "Decays"

showing 10 items of 244 documents

Isomeric 13/2+ state in 201Fr

2020

We have identified an isomeric state in 201Fr for which we propose a spin and parity of 13/2 +, and interpret it as arising from the π(i13/2 ) configuration. A half-life of 720(40) ns was measured, corresponding to B(M2) = 0.17(2) W.u., in good agreement with those of other 13/2 + → 9/2 − [π(i13/2 ) → π(h9/2 )] transitions observed in other nuclei in the region. The nuclei of interest were produced in a fusion-evaporation reaction and their decay properties were investigated using the GREAT spectrometer at the focal plane of the RITU gas-filled recoil separator. peerReviewed

lifetimes and widthsalpha decayenergy levels and level densitiesnuclear spin and parityisomer decaysydinfysiikkanuclear structure and decays
researchProduct

A search for flavour changing neutral currents in top-quark decays in pp collision data collected with the ATLAS detector at root s=7 TeV

2012

A search for flavour changing neutral current (FCNC) processes in top-quark decays by the ATLAS Collaboration is presented. Data collected from pp collisions at the LHC at a centre-of-mass energy of √s = 7 TeV during 2011, corresponding to an integrated luminosity of 2.1 fb[superscript −1], were used. A search was performed for top-quark pair-production events, with one top quark decaying through the t → Zq FCNC (q = u, c) channel, and the other through the Standard Model dominant mode t → W b. Only the decays of the Z boson to charged leptons and leptonic W -boson decays were considered as signal. Consequently, the final-state topology is characterised by the presence of three isolated cha…

Top quarkFlavourHadron hadron scattering01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Hadron Hadron ScatteringQCDetectors de radiacióddc:539PhysicsLarge Hadron ColliderSettore FIS/01 - Fisica SperimentaleATLASTop PhysicsTop physicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearLHCNeutrinoParticle Physics - ExperimentParticle physicsNuclear and High Energy PhysicsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Flavour Changing Neutral CurrentsFOS: Physical sciencesddc:500.2Hadron-hadron scattering530TOP QUARKPartícules (Física nuclear)0103 physical sciencesddc:530High Energy Physics010306 general physicsFlavour changing neutral currentsNeutral current010308 nuclear & particles physicsBranching fractionRare DecaysHigh Energy Physics::PhenomenologyFísicaRare decaysCollisionHadron Hadron Scattering; Top Physics; Rare Decays; Flavour Changing Neutral CurrentsFLAVOR CHANGING NEUTRAL CURRENTCol·lisions (Física nuclear)HADRON-HADRON COLLISIONSExperimental High Energy PhysicsHigh Energy Physics::ExperimentLepton
researchProduct

Isovector and isoscalar spin-multipole giant resonances in the parent and daughter nuclei of double-β-decay triplets

2022

The strength distributions, including giant resonances, of isovector and isoscalar spin-multipole transitions in the commonly studied double-β-decay triplets are computed in the framework of the quasiparticle random-phase approximation (QRPA) using the Bonn-A two-body interaction in no-core single-particle valence spaces. The studied nuclei include the double-β parent and daughter pairs (76Ge, 76Se), (82Se, 82Kr), (96Zr, 96Mo), (100Mo, 100Ru), (116Cd, 116Sn), (128Te, 128Xe), (130Te, 130Xe), and (136Xe, 136Ba). The studied transitions proceed from the ground states to the Jπ=0−,1−,2− (spin-dipole transitions) and Jπ=1+,2+,3+ (spin-quadrupole transitions) excited states in these nuclei. Compa…

59 ≤ A ≤ 8990 ≤ A ≤ 149nuclear physicsbeetasäteilyneutriinotdouble beta decaynuclear structure & decayscollective modelshiukkasfysiikkaydinfysiikkakvasihiukkaset
researchProduct

tau -> pi pi pi nu(tau) decays and the a(1)(1260) off-shell width revisited

2009

The tau -> pi pi pi nu(tau) decay is driven by the hadronization of the axial-vector current. Within the resonance chiral theory, and considering the large-N-C expansion, this process has been studied in Ref. [1] (D. Gomez Dumm, A. Pich, J. Portoles, 2004). In the light of later developments we revise here this previous work by including a new off-shell width for the lightest a(1) resonance that provides a good description of the tau -> pi pi pi nu(tau) spectrum and branching ratio. We also consider the role of the rho(1450) resonance in these observables. Thus we bring in an overall description of the tau -> pi pi pi nu(tau) process in excellent agreement with our present experimental know…

High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Hadron tau decays[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Física1/N ExpansionHigh Energy Physics::ExperimentChiral lagrangiansQCDHigh Energy Physics - Experiment
researchProduct

Precision measurement of the mass of the tau lepton

2014

An energy scan near the $\tau$ pair production threshold has been performed using the BESIII detector. About $24$ pb$^{-1}$ of data, distributed over four scan points, was collected. This analysis is based on $\tau$ pair decays to $ee$, $e\mu$, $eh$, $\mu\mu$, $\mu h$, $hh$, $e\rho$, $\mu\rho$ and $\pi\rho$ final states, where $h$ denotes a charged $\pi$ or $K$. The mass of the $\tau$ lepton is measured from a maximum likelihood fit to the $\tau$ pair production cross section data to be $m_{\tau} = (1776.91\pm0.12 ^{+0.10}_{-0.13}$) MeV/$c^2$, which is currently the most precise value in a single measurement.

PhysicsNuclear and High Energy PhysicsParticle physicsAnnihilation010308 nuclear & particles physicshep-exElectron–positron annihilationMaximum likelihoodSingle measurementDetectorBESIII01 natural sciencesDECAYSHigh Energy Physics - ExperimentNuclear physicsENERGYPair production0103 physical sciencesRADIATIVE-CORRECTIONSHigh Energy Physics::Experiment010306 general physicsANNIHILATIONDETECTORSYSTEMLepton
researchProduct

Searches for lepton number violation and resonances in K± → πμμ decays

2017

The NA48/2 experiment at CERN collected a large sample of charged kaon decays to final states with multiple charged particles in 2003–2004. A new upper limit on the rate of the lepton number violating decay K±→π∓μ±μ± is reported: B(K±→π∓μ±μ±)<8.6×10−11 at 90% CL. Searches for two-body resonances X in K±→πμμ decays (such as heavy neutral leptons N4 and inflatons χ ) are also presented. In the absence of signals, upper limits are set on the products of branching fractions B(K±→μ±N4)B(N4→πμ) and B(K±→π±X)B(X→μ+μ−) for ranges of assumed resonance masses and lifetimes. The limits are in the (10−11,10−9) range for resonance lifetimes below 100 ps.

leptonBEAM01 natural sciences7. Clean energyPhysics Particles & FieldsHigh Energy Physics - ExperimentLIMITSkaon physicsCERNIntermediate statelepton number violation neutrinos dark matter kaon physicsPhysicsVMSMLarge Hadron ColliderPhysicsCharge KaonsneutrinosNuclear and High Energy Physics; CERN; leptonsHigh Energy Physics - Experiment; Charge Kaons; Lepton number violationNuclear & Particles PhysicsCharged particlelcsh:QC1-999NEUTRAL HEAVY-LEPTONSPhysics Nuclearlepton number violationPhysical SciencesParticle physicsNuclear and High Energy Physicsleptonskaon decays lepton number violationNuclear and High Energy Physics lepton kaon meson lepton number violation NA48Socio-culturaleAstronomy & AstrophysicsUPPER-BOUNDSdark matterNuclear physics0202 Atomic Molecular Nuclear Particle And Plasma Physics0103 physical sciencesDARK-MATTERPARTICLES010306 general physicsScience & Technologykaon decays010308 nuclear & particles physicsBranching fractionResonanceInflatonLepton numberkaon mesonNA48High Energy Physics::Experimentlcsh:PhysicsLepton
researchProduct

Technical design of the phase I Mu3e experiment

2021

Nuclear instruments & methods in physics research / A 1014, 165679 (2021). doi:10.1016/j.nima.2021.165679

Nuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsflavor: violation [lepton]FOS: Physical sciencesElectron7. Clean energy01 natural sciences530muon: decayTechnical designMuon decaysHigh Energy Physics - Experimentdesign [detector]High Energy Physics - Experiment (hep-ex)decay [muon]Scintillating tilesPositronsemiconductor detector: pixelScintillating fibres0103 physical sciencesscintillation counter: fibreddc:530tracking detector010306 general physicsInstrumentationEngineering & allied operationsactivity reportdetector: designPhysicspixel [semiconductor detector]MuonPixel010308 nuclear & particles physicsDetectorMonolithic pixel detectorlepton: flavor: violationInstrumentation and Detectors (physics.ins-det)fibre [scintillation counter]sensitivityLepton flavour violationBeamlineHigh Energy Physics::Experimentddc:620performanceLepton
researchProduct

Search for a Dark Leptophilic Scalar in e(+) e(-) Collisions

2020

Many scenarios of physics beyond the standard model predict the existence of new gauge singlets, which might be substantially lighter than the weak scale. The experimental constraints on additional scalars with masses in the MeV to GeV range could be significantly weakened if they interact predominantly with leptons rather than quarks. At an e+e- collider, such a leptophilic scalar (φL) would be produced predominantly through radiation from a τ lepton. We report herein a search for e+e-→τ+τ-φL, φL→ℓ+ℓ- (ℓ=e, μ) using data collected by the BABAR experiment at SLAC. No significant signal is observed, and we set limits on the φL coupling to leptons in the range 0.04<mφL<7.0 GeV. These bounds s…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Electron–positron annihilationPhysics beyond the Standard ModelGeneral Physics and Astronomy01 natural sciencesElementary particlecurrent: constraintE+e- collider[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HEP BaBarMathematical physicsPhysicstau: pair productionnew physics: search forSettore FIS/01 - Fisica Sperimentalescale: electroweak interactionelectron positron: colliding beamsModel estàndard (Física nuclear)Standard model (Nuclear physics)Monte Carlo method:Nuclear and elementary particle physics: 431 [VDP]The standard modelConfidence levelPEP-IIAnomalous magnetic momentleptonic decayScalar (mathematics)lepton: couplinganomalycoupling constant: upper limitelectron positron: annihilationNOMagnetic momentBABAR experimentlepton: coupling: high0103 physical sciencesParameter spaceBaBar; PEP-II; Rare decays;singlet: gauge010306 general physicsMètode de Montecarlomuon: magnetic momentHigh Energy Physics::PhenomenologyRare decaysSLAC PEP StorRare decay[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]BaBarElementary Particles and FieldsHigh Energy Physics::ExperimentLeptonexperimental results
researchProduct

Spectroscopy of low-spin states in $^{157}\mathrm{Dy}$: Search for evidence of enhanced octupole correlations

2019

Low-spin states of 157Dy have been studied using the JUROGAM II array, following the 155Gd ({\alpha}, 2n) reaction at a beam energy of 25 MeV. The level scheme of 157Dy has been expanded with four new bands. Rotational structures built on the [523]5/2- and [402]3/2+ neutron orbitals constitute new additions to the level scheme as do many of the inter- and intra-band transitions. This manuscript also reports the observation of cross I- to (I-1)- and I- to (I-1)+ E1 dipole transitions inter-linking structures built on the [523]5/2- (band 5) and [402]3/2+ (band 7) neutron orbitals. These interlacing band structures are interpreted as the bands of parity doublets with simplex quantum number s =…

Nuclear Theory (nucl-th)Nuclear Theorynuclear spin and parityshell modelFOS: Physical sciencescollective levelscollective modelsNuclear Experiment (nucl-ex)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ydinfysiikkaNuclear Structurenuclear structure and decaysNuclear Experiment
researchProduct

Search for heavy neutrinos at the NA48/2 and NA62 experiments at CERN

2018

© The Authors, published by EDP Sciences. The NA48/2 experiment at CERN has collected large samples of charged kaons decaying into a pion and two muons for the search of heavy nuetrinos. In addition, its successor NA62 has set new limits on the rate of charged kaon decay into a heavy neutral lepton (HNL) and a lepton, with = e, µ, using the data collected in 2007 and 2015. New limits on heavy neutrinos from kaon decays into pions, muons and positrons are presented in this report.

PhysicsParticle physicsLarge Hadron ColliderMuonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsPhysicsQC1-999Nuclear TheoryHigh Energy Physics::PhenomenologyHeavy neutrino01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnuclearePhysics and Astronomy (all)Pion0103 physical sciencesHigh Energy Physics::ExperimentKaon decaysNeutrinoHeavy neutrinoNuclear Experiment010306 general physicsKaon decays Heavy neutrinoParticle Physics - ExperimentLepton
researchProduct