Search results for "Decision Tree"
showing 10 items of 170 documents
Testing the potential significance of different scion/rootstock genotype combinations on the ecology of old cultivated olive trees in the southeast M…
2017
Background A previous multi-locus lineage (MLL) analysis of SSR-microsatellite data of old olive trees in the southeast Mediterranean area had shown the predominance of the Souri cultivar (MLL1) among grafted trees. The MLL analysis had also identified an MLL (MLL7) that was more common among rootstocks than other MLLs. We here present a comparison of the MLL combinations MLL1 (scion)/MLL7 (rootstock) and MLL1/MLL1 in order to investigate the possible influence of rootstock on scion phenotype. Results A linear regression analysis demonstrated that the abundance of MLL1/MLL7 trees decreases and of MLL1/MLL1 trees increases along a gradient of increasing aridity. Hypothesizing that grafting o…
Ant Colony Optimisation-Based Classification Using Two-Dimensional Polygons
2016
The application of Ant Colony Optimization to the field of classification has mostly been limited to hybrid approaches which attempt at boosting the performance of existing classifiers (such as Decision Trees and Support Vector Machines (SVM)) — often through guided feature reductions or parameter optimizations.
Assembly Assistance System with Decision Trees and Ensemble Learning
2021
This paper presents different prediction methods based on decision tree and ensemble learning to suggest possible next assembly steps. The predictor is designed to be a component of a sensor-based assembly assistance system whose goal is to provide support via adaptive instructions, considering the assembly progress and, in the future, the estimation of user emotions during training. The assembly assistance station supports inexperienced manufacturing workers, but it can be useful in assisting experienced workers, too. The proposed predictors are evaluated on the data collected in experiments involving both trainees and manufacturing workers, as well as on a mixed dataset, and are compared …
2021
Classification approaches that allow to extract logical rules such as decision trees are often considered to be more interpretable than neural networks. Also, logical rules are comparatively easy to verify with any possible input. This is an important part in systems that aim to ensure correct operation of a given model. However, for high-dimensional input data such as images, the individual symbols, i.e. pixels, are not easily interpretable. Therefore, rule-based approaches are not typically used for this kind of high-dimensional data. We introduce the concept of first-order convolutional rules, which are logical rules that can be extracted using a convolutional neural network (CNN), and w…
The predictive value of microbiological findings on teeth, internal and external implant portions in clinical decision making
2017
International audience; Aim: The primary aim of this study was to evaluate 23 pathogens associated with peri-implantitis at inner part of implant connections, in peri-implant and periodontal pockets between patients suffering peri-implantitis and participants with healthy peri-implant tissues; the secondary aim was to estimate the predictive value of microbiological profile in patients wearing dental implants using data mining methods.Material and Methods: Fifty participants included in the present case─control study were scheduled for collection of plaque samples from the peri-implant pockets, internal connection, and periodontal pocket. Real-time polymerase chain reaction was performed to…
A Simple Method to Predict Blood-Brain Barrier Permeability of Drug- Like Compounds Using Classification Trees
2017
Background: To know the ability of a compound to penetrate the blood-brain barrier (BBB) is a challenging task; despite the numerous efforts realized to predict/measure BBB passage, they still have several drawbacks. Methods: The prediction of the permeability through the BBB is carried out using classification trees. A large data set of 497 compounds (recently published) is selected to develop the tree model. Results: The best model shows an accuracy higher than 87.6% for training set; the model was also validated using 10-fold cross-validation procedure and through a test set achieving accuracy values of 86.1% and 87.9%, correspondingly. We give a brief explanation, in structural terms, o…
Prediction of Chromatin Accessibility in Gene-Regulatory Regions from Transcriptomics Data
2017
AbstractThe epigenetics landscape of cells plays a key role in the establishment of cell-type specific gene expression programs characteristic of different cellular phenotypes. Different experimental procedures have been developed to obtain insights into the accessible chromatin landscape including DNase-seq, FAIRE-seq and ATAC-seq. However, current downstream computational tools fail to reliably determine regulatory region accessibility from the analysis of these experimental data. In particular, currently available peak calling algorithms are very sensitive to their parameter settings and show highly heterogeneous results, which hampers a trustworthy identification of accessible chromatin…
Do next-generation sequencing results drive diagnostic and therapeutic decisions in MDS?
2019
Este artículo se encuentra disponible en la siguiente URL: https://ashpublications.org/bloodadvances/article/3/21/3454/422749/Do-next-generation-sequencing-results-drive
Cell state prediction through distributed estimation of transmit power
2019
Determining the state of each cell, for instance, cell outages, in a densely deployed cellular network is a difficult problem. Several prior studies have used minimization of drive test (MDT) reports to detect cell outages. In this paper, we propose a two step process. First, using the MDT reports, we estimate the serving base station’s transmit power for each user. Second, we learn summary statistics of estimated transmit power for various networks states and use these to classify the network state on test data. Our approach is able to achieve an accuracy of 96% on an NS-3 simulation dataset. Decision tree, random forest and SVM classifiers were able to achieve a classification accuracy of…
A computational approach for the assessment of executive functions in patients with obsessive-compulsive disorder
2019
Previous studies on obsessive–compulsive disorder (OCD) showed impairments in executive domains, particularly in cognitive inhibition. In this perspective, the use of virtual reality showed huge potential in the assessment of executive functions; however, unfortunately, to date, no study on the assessment of these patients took advantage of the use of virtual environments. One of the main problems faced within assessment protocols is the use of a limited number of variables and tools when tailoring a personalized program. The main aim of this study was to provide a heuristic decision tree for the future development of tailored assessment protocols. To this purpose, we conducted a study that…