Search results for "Degenerate energy levels"

showing 10 items of 221 documents

Multiple band crossings and Fermi surface topology: Role of double nonsymmorphic symmetries in MnP-type crystal structures

2019

We use relativistic ab-initio methods combined with model Hamiltonian approaches to analyze the normal-phase electronic and structural properties of the recently discovered WP superconductor. Remarkably, the outcomes of such study can be employed to set fundamental connections among WP and the CrAs and MnP superconductors belonging to the same space group. One of the key features of the resulting electronic structure is represented by the occurrence of multiple band crossings along specific high symmetry lines of the Brilloiun zone. In particular, we demonstrate that the eight-fold band degeneracy obtained along the SR path at (kx,ky)=(Pi,Pi) is due to inversion-time reversal invariance and…

SuperconductivityMaterials scienceStrongly Correlated Electrons (cond-mat.str-el)Physics and Astronomy (miscellaneous)Condensed Matter - SuperconductivityDegenerate energy levelsFermi levelFOS: Physical sciencesFermi surface02 engineering and technologyElectronic structure021001 nanoscience & nanotechnologyTopology01 natural sciencesSuperconductivity (cond-mat.supr-con)Brillouin zoneCondensed Matter - Strongly Correlated Electronssymbols.namesake0103 physical sciencessymbolsGeneral Materials Science010306 general physics0210 nano-technologyHamiltonian (quantum mechanics)Fermi Gamma-ray Space TelescopePhysical Review Materials
researchProduct

Convergent transformations into a normal form in analytic Hamiltonian systems with two degrees of freedom on the zero energy surface near degenerate …

2004

We study an analytic Hamiltonian system with two degrees of freedom, having the origin as an elliptic singularity. We assume that the full Birkhoff normal form exists and is divisible by its quadratic part, being indefinite. We show that under the Bruno condition and under the restriction to the zero energy surface, a real analytic transformation into a normal form exists. Such a normal form coincides with the restriction of the Birkhoff normal form to the zero energy surface up to an order as large as we want.

Surface (mathematics)Quadratic equationSingularityApplied MathematicsGeneral MathematicsDegenerate energy levelsMathematical analysisZero-point energyOrder (ring theory)Gravitational singularityMathematical physicsHamiltonian systemMathematicsErgodic Theory and Dynamical Systems
researchProduct

Stability of degenerate parabolic Cauchy problems

2015

We prove that solutions to Cauchy problems related to the $p$-parabolic equations are stable with respect to the nonlinearity exponent $p$. More specifically, solutions with a fixed initial trace converge in an $L^q$-space to a solution of the limit problem as $p>2$ varies.

Trace (linear algebra)Applied MathematicsDegenerate energy levelsMathematical analysista111nonlinear parabolic equationsCauchy distribution35K55 35K15stabilityStability (probability)Nonlinear systemMathematics - Analysis of PDEsBarenblatt solutionsExponentFOS: MathematicsInitial value problemLimit (mathematics)initial value problemsCauchy problemsAnalysisMathematicsAnalysis of PDEs (math.AP)Communications on pure and applied analysis
researchProduct

Problem of the magnetic anisotropy in orbitally degenerate exchange and mixed-valence clusters

2003

Abstract This contribution summarizes the results obtained in the problem of orbital degeneracy of the metal ions in exchange coupled and mixed-valence (MV) clusters. The theory of the double exchange is generalized and the orbitally degenerate systems are considered. The orbitally dependent double exchange parameter is deduced for the singlet–triplet and triplet–triplet transition metal pairs in three high-symmetric topologies. A new effective Hamiltonian of the magnetic exchange between the ions with unquenched orbital angular momenta is discussed. The technique of the irreducible tensor operators is applied to the problem of the kinetic exchange in these kind of metal clusters. Strong ma…

Valence (chemistry)Condensed matter physicsChemistryExchange interactionDegenerate energy levelsKinetic energyIonInorganic Chemistrysymbols.namesakeMagnetic anisotropyTransition metalMaterials ChemistrysymbolsCondensed Matter::Strongly Correlated ElectronsPhysical and Theoretical ChemistryHamiltonian (quantum mechanics)Polyhedron
researchProduct

A Viscosity Equation for Minimizers of a Class of Very Degenerate Elliptic Functionals

2013

We consider the functional $$J(v) = \int_\varOmega\bigl[f\bigl(|\nabla v|\bigr) - v\bigr] dx, $$ where Ω is a bounded domain and f:[0,+∞)→ℝ is a convex function vanishing for s∈[0,σ], with σ>0. We prove that a minimizer u of J satisfies an equation of the form $$\min\bigl(F\bigl(\nabla u, D^2 u\bigr), |\nabla u|-\sigma\bigr)=0 $$ in the viscosity sense.

Viscosity solutions minimizer of convex functionals very degenerate elliptic functionalsClass (set theory)Pure mathematicsSettore MAT/05 - Analisi MatematicaBounded functionMathematical analysisDomain (ring theory)Degenerate energy levelsNabla symbolViscosity solutionConvex functionMathematics
researchProduct

On the algebraic types of the Bel–Robinson tensor

2008

The Bel-Robinson tensor is analyzed as a linear map on the space of the traceless symmetric tensors. This study leads to an algebraic classification that refines the usual Petrov-Bel classification of the Weyl tensor. The new classes correspond to degenerate type I space-times which have already been introduced in literature from another point of view. The Petrov-Bel types and the additional ones are intrinsically characterized in terms of the sole Bel-Robinson tensor, and an algorithm is proposed that enables the different classes to be distinguished. Results are presented that solve the problem of obtaining the Weyl tensor from the Bel-Robinson tensor in regular cases.

Weyl tensorPhysicsPure mathematicsPhysics and Astronomy (miscellaneous)Degenerate energy levelsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Type (model theory)Space (mathematics)General Relativity and Quantum CosmologyLinear mapGeneral Relativity and Quantum Cosmologysymbols.namesakeAlgebraic data typesymbolsTensorAlgebraic numberGeneral Relativity and Gravitation
researchProduct

Magnetic exchange interaction in clusters of orbitally degenerate ions. II. Application of the irreducible tensor operator technique

2001

Abstract The irreducible tensor operator technique in R3 group is applied to the problem of kinetic exchange between transition metal ions possessing orbitally degenerate ground states in the local octahedral surrounding. Along with the effective exchange Hamiltonian, the related interactions (low-symmetry crystal field terms, Coulomb interaction between unfilled electronic shells, spin–orbit coupling and Zeeman interaction) are also taken into account within a unified computational scheme. Extension of this approach to high-nuclearity systems consisting of transition metal ions in the orbital triplet ground states is also demonstrated. As illustrative examples, the corner-shared D4h dimers…

Zeeman effectChemistryDegenerate energy levelsGeneral Physics and AstronomyKinetic energyIonsymbols.namesakeMagnetic anisotropysymbolsCoulombPhysical and Theoretical ChemistryAtomic physicsHamiltonian (quantum mechanics)Tensor operatorChemical Physics
researchProduct

The non-degenerate Dupin cyclides in the space of spheres using Geometric Algebra

2012

International audience; Dupin cyclides are algebraic surfaces of degree 4 discovered by the French mathematician Pierre-Charles Dupin early in the 19th century and \textcolor{black}{were} introduced in CAD by R. Martin in 1982. A Dupin cyclide can be defined, in two different ways, as the envelope of a one-parameter family of oriented spheres. So, it is very interesting to model the Dupin cyclides in the space of spheres, space wherein each family of spheres can be seen as a conic curve. In this paper, we model the non-degenerate Dupin cyclides and the space of spheres using Conformal Geometric Algebra. This new approach permits us to benefit from the advantages of the use of Geometric Alge…

[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]Dupin cyclideDupin cyclide[INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR]010103 numerical & computational mathematics02 engineering and technologySpace (mathematics)[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]01 natural sciencesGeometric algebra[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]space of spheresAlgebraic surface0202 electrical engineering electronic engineering information engineering0101 mathematicsComputingMilieux_MISCELLANEOUSMathematicsconformal geometric algebraApplied MathematicsDegenerate energy levelsConformal geometric algebra020207 software engineering[ INFO.INFO-GR ] Computer Science [cs]/Graphics [cs.GR][INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]AlgebraConic section[ INFO.INFO-CG ] Computer Science [cs]/Computational Geometry [cs.CG]SPHERES
researchProduct

Symmetry-adapted tensorial formalism to model rovibrational and rovibronic spectra of molecules pertaining to various point groups

2004

International audience; We present a short review on the tensorial formalism developed by the Dijon group to solve molecular spectroscopy problems. This approach, originally devoted to the rovibrational spectroscopy of highly symmetrical species (spherical tops) has been recently extended in several directions: quasi-spherical tops, some symmetric and asymmetric tops, and rovibronic spectroscopy of spherical tops in a degenerate electronic state. Despite its apparent complexity (heavy notations, quite complex mathematical tools), these group theoretical tensorial methods have a great advantage of flexibility: a systematic expansion of effective terms for any rovib- rational/rovibronic probl…

[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Rovibrational spectroscopyRovibronic spectroscopySymmetrizationTensorial formalism02 engineering and technologyMolecular spectroscopyPoint group01 natural sciencesSpectral lineTheoretical physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanics0103 physical sciencesPhysics::Atomic and Molecular ClustersMoleculeLineshapesPhysical and Theoretical ChemistrySpectroscopySpectroscopyPhysics010304 chemical physicsDegenerate energy levelsRotational–vibrational spectroscopy021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsFormalism (philosophy of mathematics)Group theory0210 nano-technology
researchProduct

Suppression of plasma contribution in femtosecond degenerate four-wave mixing (fs-DFWM) at high intensity

2007

Femtosecond degenerate four-wave mixing (fs-DFWM) experiments in CO2 exhibit a strong background due to plasma produced at high intensity (≥20 TW/cm2), when significant molecular alignment is likely to arise. This perturbing phenomenon renders the measurements of alignment very difficult. It is shown that the plasma contribution can be avoided by employing perpendicular polarizations for the two pump pulses. The effect is explained on the basis of the different diffraction angles between signals produced by molecular alignment and plasma. Copyright © 2007 John Wiley & Sons, Ltd.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Diffraction02 engineering and technology01 natural sciencesMolecular physicssymbols.namesakeOpticsIonization0103 physical sciencesGeneral Materials Science010306 general physicsSpectroscopyMixing (physics)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryChemistryDegenerate energy levelsPlasma021001 nanoscience & nanotechnologyFemtosecondsymbols0210 nano-technologybusinessRaman spectroscopyFemtochemistryJournal of Raman Spectroscopy
researchProduct