Search results for "Delivery systems"
showing 10 items of 322 documents
CURCUMIN-LOADED LIPID NANOSTRUCTURES AS DRUG DELIVERY SYSTEMS.
2009
PEGYLATED PHOSPHOLIPID-POLYASPARTAMIDE COPOLYMERS AS SELF-ASSEMBLING COLLOIDAL DRUG DELIVERY SYSTEMS
2009
Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles
2011
Mesoporous silicon is a biocompatible, biodegradable material that is receiving increased attention for pharmaceutical applications due to its extensive specific surface. This feature enables to load a variety of drugs in mesoporous silicon devices by simple adsorption-based procedures. In this work, we have addressed the fabrication and characterization of two new mesoporous silicon devices prepared by electrochemistry and intended for protein delivery, namely: (i) mesoporous silicon microparticles and (ii) chitosan-coated mesoporous silicon microparticles. Both carriers were investigated for their capacity to load a therapeutic protein (insulin) and a model antigen (bovine serum albumin) …
Bioadhesive monolayer film for the in vitro transdermal delivery of sumatriptan
2006
The work presented here aims to develop a bioadhesive monolayer film containing sumatriptan as adjuvant for the treatment of headache pain in a severe migraine attack. Permeation experiments were performed from the films prepared and from the respective solution, to evaluate the relevant permeation parameters. The effect of the penetration enhancers Transcutol, 2-pyrrolidone, and polyethylene glycol 600 was evaluated. The results obtained show that Transcutol and 2-pyrrolidone decreased sumatriptan permeation from solution, whereas a modest increase was produced by polyethylene glycol 600. The enhancers produced the same effects when they were included in the film. Compared to solution, the…
Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach
2019
Despite the first successful applications of nonviral delivery vectors for small interfering RNA in the treatment of illnesses, such as the respiratory syncytial virus infection, the preparation of a clinically suitable, safe, and efficient delivery system still remains a challenge. In this study, we tackle the drawbacks of the existing systems by a combined experimental-computational in-depth investigation of the influence of the polymer architecture over the binding and transfection efficiency. For that purpose, a library of diblock copolymers with a molar mass of 30 kDa and a narrow dispersity (Đ1.12) was synthesized. We studied in detail the impact of an altered block size and/or compos…
Ion-exchange fibers and drugs: an equilibrium study
2001
The purpose of this study was to investigate the mechanisms of drug binding into and drug release from cation-exchange fibers in vitro under equilibrium conditions. Ion-exchange groups of the fibers were weakly drug binding carboxylic acid groups (-COOH), strongly drug binding sulphonic acid groups (-SO(3)H), or combinations thereof. Parameters determining the drug absorption and drug release properties of the fibers were: (i) the lipophilicity of the drug (tacrine and propranolol are lipophilic compounds, nadolol is a relatively hydrophilic molecule), (ii) the ion-exchange capacity of the fibers, which was increased by activating the cation-exchange groups with NaOH, (iii) the ionic streng…
N-Heterocyclic choline analogues based on 1,2,3,4-tetrahydro(iso)quinoline scaffold with anticancer and anti-infective dual action
2016
Pharmacological effects of biologically active “small molecules” can be improved by their targeted modification, which affects drug delivery and interaction with tumor cells and microorganisms. We aimed to evaluate anticancer and antimicrobial activity of lipid-like choline derivatives modified via simultaneous introduction of tetrahydro(iso)quinoline based pharmacophore system at nitrogen atom and long chain alkyl substituent at oxygen atom. Target compounds were synthesized under phase-transfer catalysis conditions followed by quaternization, and evaluated for cytotoxicity and NO-generation ability on HT-1080 and MG-22A tumor cell lines and NIH 3T3 normal mouse fibroblasts, and screened f…
Hydrogels for potential colon drug release by thiol-ene conjugate addition of a new inulin derivative.
2008
Inulin was chosen as a starting polymer for biocompatible, pH-sensitive and biodegradable hydrogels. Three INUDVSA-TT hydrogels were obtained by crosslinking inulin derivatives with trimethylolpropane tris(3-mercaptopropionate) under varying conditions. The resulting hydrogels were cell compatible, as demonstrated by MTS and trypan blue exclusion assays acting on Caco-2 cells, and were biodegraded by inulinase and esterase, thus suggesting their use as colonic drug delivery systems. 2-Methoxyestradiol, an anti-cancer drug, was soaked in INUDVSA-TT hydrogels and its in vitro release and apoptotic effect on Caco-2 cells were evaluated.
Polymeric drug delivery micelle-like nanocarriers for pulmonary administration of beclomethasone dipropionate
2017
In this paper, the potential of novel polymeric micelles as drug delivery systems for Beclomethasone Dipropionate (BDP) administration into the lung is investigated. These nanostructures are obtained starting from α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA), which was subsequently functionalized with O-(2-aminoethyl)-Oâ-methylpolyethylenglycole (PEG2000), ethylenediamine (EDA) and lipoic acid (LA), obtaining PHEA-PEG2000-EDA-LA graft copolymer. Empty and drug-loaded micelles possess adequate chemical-physical characteristics for pulmonary administration such as spherical shape, slightly positive surface charge and mean size of about 200 nm. Besides, BDP-loaded micelles, obtained …
Chitosomes as drug delivery systems for C-phycocyanin: preparation and characterization.
2010
The aim of this work was to investigate chitosomes, i.e. liposomes coated by a polyelectrolyte complex between chitosan (CH) and xantan gum (XG), as potential delivery system for oral administration of the protein C-phycocyanin. To this purpose several CH-XG-microcomplexes were prepared in aqueous lactic acid at different chitosan-xanthan gum percent ratios and rheological properties of the microcomplexes were studied to analyse the contribution of chitosan and xanthan gum in the reaction of microcomplexation. After establishing the best microcomplexes, chitosomes were prepared by coating C-phycocyanin loaded liposomes with the CH-XG hydrogels using spray-drying or freeze-drying. The chitos…