Search results for "Descriptive set theory"
showing 10 items of 94 documents
Relaxation of periodic and nonstandard growth integrals by means of two-scale convergence
2019
An integral representation result is obtained for the variational limit of the family functionals $\int_{\Omega}f\left(\frac{x}{\varepsilon}, Du\right)dx$, as $\varepsilon \to 0$, when the integrand $f = f (x,v)$ is a Carath\'eodory function, periodic in $x$, convex in $v$ and with nonstandard growth.
EFFECTIVE FIELD THEORY APPROACH TO THE NUCLEON–NUCLEON INTERACTION REVISITED
2006
It is argued that Weinberg's approach to the nucleon–nucleon (NN) interaction problem within effective field theory provides a consistent power counting for renormalized diagrams. Within this scheme the NN potential is organized as an expansion in terms of small quantities like small external momenta and the pion mass (divided by the characteristic large scale of the effective theory). Physical observables to any given order in these small quantities are calculated from the solutions of the Lippmann–Schwinger (or Schrödinger) equation.
K -> pi pi Electroweak Penguins in the Chiral Limit
2002
We report on dispersive and finite energy sum rule analyses of the electroweak penguin matrix elements in the chiral limit. We accomplish the correct perturbative matching (scale and scheme dependence) at NLO in alpha_s, and we describe two different strategies for numerical evaluation.
B-L-violating masses in softly broken supersymmetry
1997
We prove a general low-energy theorem establishing a generic relation between the neutrino Majorana mass and the superpartner sneutrino B-L-violating "Majorana"-like mass term. The theorem states that, if one of these two quantities is non-zero the other one is also non-zero and, vice versa, if one of them vanishes the other vanishes, too. The theorem is a consequence of the underlying supersymmetry (SUSY) and valid for any realistic gauge model with weak scale softly broken SUSY.
Tri-bimaximal neutrino mixing and neutrinoless double beta decay
2008
We present a tri-bimaximal lepton mixing scheme where the neutrinoless double beta decay rate (bb0v) has a lower bound which correlates with the ratio alpha = Dmsol/Dmatm well determined by current data, as well as with the unknown Majorana CP phase phi12 characterizing the solar neutrino sub-system. For the special value phi12 = pi/2 (opposite CP-sign neutrinos) the bb0v rate vanishes at tree level when Dmsol/Dmatm = 3/80, only allowed at 3 sigma. For all other cases the rate is nonzero, and lies within current and projected experimental sensitivities close to phi12=0. We suggest two model realizations of this scheme in terms of an A4xZ2 and A4xZ4 flavour symmetries.
Flavor changing neutral currents in the dualized standard model
1998
The Dualized Standard Model which gives explanations for both fermion generations and Higgs fields has already been used to calculate fermion mass and mixing parameters with success. In this paper, we extend its application to low energy FCNC effects deriving bounds for various processes in terms of one single mass scale. Using then experimental information from K_L - K_S mass difference and air showers beyond the GZK cut-off, these bounds are converted into rough, order-of-magnitude predictions. In particular, the estimates for the decay K_L \to e^\pm \mu^\mp and for the mass difference between the neutral D-mesons seem accessible to experiment in the near future.
Radiative decay intoγPof the low lying axial-vector mesons
2008
We evaluate the radiative decay into a pseudoscalar meson and a photon of the whole set of the axial-vector mesons dynamically generated from the vector-pseudoscalar meson interaction. We take into account tree level and loop diagrams coming from the axial-vector decay into a vector and a pseudoscalar meson. We find a large span for the values of the radiative widths of the different axial-vector mesons. In particular, we evaluate the radiative decay into K{gamma} of the two K{sub 1}(1270) states, recently claimed theoretically, and discuss the experimental values quoted so far on the assumption of only one state.
Nonlinear corrections to the DGLAP equations in view of the HERA data
2002
The effects of the first nonlinear corrections to the DGLAP evolution equations are studied by using the recent HERA data for the structure function $F_2(x,Q^2)$ of the free proton and the parton distributions from CTEQ5L and CTEQ6L as a baseline. By requiring a good fit to the H1 data, we determine initial parton distributions at $Q_0^2=1.4$ GeV$^2$ for the nonlinear scale evolution. We show that the nonlinear corrections improve the agreement with the $F_2(x,Q^2)$ data in the region of $x\sim 3\cdot 10^{-5}$ and $Q^2\sim 1.5$ GeV$^2$ without paying the price of obtaining a worse agreement at larger values of $x$ and $Q^2$. For the gluon distribution the nonlinear effects are found to play…
Coherent Smith-Purcell radiation for minimally invasive bunch length measurement at the subpicosecond time scale
2021
Physical review accelerators and beams 24(4), 042803 (2021). doi:10.1103/PhysRevAccelBeams.24.042803
Low-scale seesaw models versusNeff
2014
We consider the contribution of the extra sterile states in generic low-scale seesaw models to extra radiation, parametrized by ${N}_{\text{eff}}$. We find that the value of ${N}_{\text{eff}}$ is roughly independent of the seesaw scale within a wide range. We explore the full parameter space in the case of two extra sterile states and find that these models are strongly constrained by cosmological data for any value of the seesaw scale below $\mathcal{O}(100\text{ }\text{ }\mathrm{MeV})$.