Search results for "Diabatic"

showing 10 items of 303 documents

Two-laser multiphoton adiabatic passage in the frame of the Floquet theory. Applications to (1+1) and (2+1) STIRAP

1998

We develop an adiabatic two-mode Floquet theory to analyse multiphoton coherent population transfer in N-level systems by two delayed laser pulses, which is a generalization of the three-state stimulated Raman adiabatic passage (STIRAP). The main point is that, under conditions of non-crossing and adiabaticity, the outcome and feasibility of a STIRAP process can be determined by the analysis of two features: (i) the lifting of degeneracy of dressed states at the beginning and at the end of the laser pulses, and (ii) the connectivity of these degeneracy-lifted branches in the quasienergy diagram. Both features can be determined by stationnary perturbation theory in the Floquet representation…

Floquet theoryPhysicsStimulated Raman adiabatic passageOptical physicsAtomic and Molecular Physics and Opticssymbols.namesakeStark effectQuantum mechanicssymbolsRotating wave approximationPhysics::Atomic PhysicsPerturbation theoryDegeneracy (mathematics)Adiabatic processThe European Physical Journal D
researchProduct

Quantum dynamics by the constrained adiabatic trajectory method

2011

We develop the constrained adiabatic trajectory method (CATM) which allows one to solve the time-dependent Schr\"odinger equation constraining the dynamics to a single Floquet eigenstate, as if it were adiabatic. This constrained Floquet state (CFS) is determined from the Hamiltonian modified by an artificial time-dependent absorbing potential whose forms are derived according to the initial conditions. The main advantage of this technique for practical implementation is that the CFS is easy to determine even for large systems since its corresponding eigenvalue is well isolated from the others through its imaginary part. The properties and limitations of the CATM are explored through simple…

Floquet theoryQuantum dynamicsFOS: Physical sciences01 natural sciencesSchrödinger equationsymbols.namesakePhysics - Chemical PhysicsQuantum mechanics0103 physical sciences010306 general physicsAdiabatic processChemical Physics (physics.chem-ph)Physics[PHYS]Physics [physics]Quantum PhysicsPartial differential equation010304 chemical physicsComputational Physics (physics.comp-ph)Adiabatic quantum computationAtomic and Molecular Physics and OpticsClassical mechanicssymbolsQuantum Physics (quant-ph)Spectral methodHamiltonian (quantum mechanics)Physics - Computational Physics
researchProduct

Electric Field Effect on the Thermal Decomposition and Co-combustion of Straw with Solid Fuel Pellets

2019

The aim of this study was to provide more effective use of straw for energy production by co-firing wheat straw pellets with solid fuels (wood, peat pellets) under additional electric control of the combustion characteristics at thermo-chemical conversion of fuel mixtures. Effects of the DC electric field on the main combustion characteristics were studied experimentally using a fixed-bed experimental setup with a heat output up to 4 kW. An axisymmetric electric field was applied to the flame base between the positively charged electrode and the grounded wall of the combustion chamber. The experimental study includes local measurements of the composition of the gasification gas, flame tempe…

Flue gasControl and OptimizationMaterials science020209 energyPelletsEnergy Engineering and Power TechnologyDC electric field02 engineering and technology010501 environmental sciencesCombustion01 natural scienceslcsh:TechnologyMass transferElectric field0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringComposite materialco-firingEngineering (miscellaneous)thermal decomposition0105 earth and related environmental scienceswheat strawRenewable Energy Sustainability and the Environmentlcsh:Tbog peatSolid fuelpelletsAdiabatic flame temperaturesoftwoodCombustion chamberEnergy (miscellaneous)combustionEnergies
researchProduct

Matter, quantum gravity, and adiabatic phase

1990

Based on the observation that particle masses are much smaller than the Planck mass, a framework for the matter-gravity system in which matter follows gravitation adiabatically is examined in a path-integral approach. It is found that the equations that the resulting gravitational wave function satisfies involve, in addition to the expectation value of the matter stress tensor, an adiabatically induced gauge field which can lead to interesting topological structures in superspace. Such a non-trivial geometric contribution modifies the semiclassical quantization condition and can change the conserved quantities associated with the symmetries of the system. © 1990 The American Physical Societ…

GravitationPhysicsQuantization (physics)Classical mechanicsQuantum theoryAdiabatic phaseEinstein field equationsPlanck massSemiclassical physicsQuantum gravityGauge theoryQuantum field theoryGravitationPhysical Review D
researchProduct

Adiabatic invariants drive rhythmic human motion in variable gravity.

2019

Voluntary human movements are stereotyped. When modeled in the framework of classical mechanics they are expected to minimize cost functions that may include energy, a natural candidate from a physiological point of view also. In time-changing environments, however, energy is no longer conserved---regardless of frictional energy dissipation---and it is therefore not the preferred candidate for any cost function able to describe the subsequent changes in motor strategies. Adiabatic invariants are known to be relevant observables in such systems, although they still need to be investigated in human motor control. We fill this gap and show that the theory of adiabatic invariants provides an ac…

Gravity (chemistry)Computer scienceMovementFOS: Physical sciences01 natural sciencesModels BiologicalMotion (physics)010305 fluids & plasmasRhythm0103 physical sciencesHumansPoint (geometry)Physics - Biological Physics010306 general physicsAdiabatic processVariable (mathematics)PhysicsMotor controlObservableFunction (mathematics)Human motionPhysics - Medical PhysicsBiomechanical PhenomenaVariable (computer science)Classical mechanicsBiological Physics (physics.bio-ph)Medical Physics (physics.med-ph)Energy (signal processing)Physical review. E
researchProduct

A consistent microscopic theory of collective motion in the framework of an ATDHF approach

1978

Based on merely two assumptions, namely the existence of a collective Hamiltonian and that the collective motion evolves along Slater determinants, we first derive a set of adiabatic time-dependent Hartree-Fock equations (ATDHF) which determine the collective path, the mass and the potential, second give a unique procedure for quantizing the resulting classical collective Hamiltonian, and third explain how to use the collective wavefunctions, which are eigenstates of the quantized Hamiltonian.

Hamiltonian mechanicsPhysicsGeneral Physics and AstronomyEigenfunctionAdiabatic theoremsymbols.namesakeClassical mechanicsQuantum mechanicssymbolsSlater determinantMicroscopic theoryAdiabatic processWave functionHamiltonian (quantum mechanics)Annals of Physics
researchProduct

Factors influencing structural heat-induced structural relaxation of dissolved organic matter

2018

Abstract Physical and chemical structure affect properties of dissolved organic matter (DOM). Recent observations revealed that heating and cooling cycles at higher temperature amplitude lead to a change in DOM physical conformation assumingly followed by a slow structural relaxation. In this study, changes at lower temperature amplitudes and their relation to DOM composition were investigated using simultaneous measurements of density and ultrasonic velocity in order to evaluate the adiabatic compressibility, which is sensitive indicator of DOM structural microelasticity. Six fulvic acids (FAs) having various origins were analyzed at concentrations of 0.12, 0.6 and 1.2 g L−1 and at differe…

Health Toxicology and MutagenesisFulvic acidMolecular Conformation0211 other engineering and technologiesThermodynamics02 engineering and technology010501 environmental sciences01 natural sciencesDissolved organic carbonDissolved organic matterBenzopyransReactivity (chemistry)ConformationOrganic ChemicalsStructural relaxationChemical compositionDissolutionAlkyl0105 earth and related environmental scienceschemistry.chemical_classification021110 strategic defence & security studiesRelaxation (NMR)Adiabatic compressibilityTemperaturePublic Health Environmental and Occupational HealthGeneral MedicinePollutionCarbonBenzopyranBiodegradation EnvironmentalAmplitudechemistryCompressibilityBiological propertieOrganic ChemicalCrystallizationEcotoxicology and Environmental Safety
researchProduct

Pair creation in electric fields, anomalies, and renormalization of the electric current

2018

We investigate the Schwinger pair production phenomena in spatially homogeneous strong electric fields. We first consider scalar QED in four-dimensions and discuss the potential ambiguity in the adiabatic order assignment for the electromagnetic potential required to fix the renormalization subtractions. We argue that this ambiguity can be solved by invoking the conformal anomaly when both electric and gravitational backgrounds are present. We also extend the adiabatic regularization method for spinor QED in two-dimensions and find consistency with the chiral anomaly. We focus on the issue of the renormalization of the electric current $\langle j^\mu \rangle$ generated by the created pairs.…

High Energy Physics - TheoryChiral anomalyPhysicsSpinor010308 nuclear & particles physicsHigh Energy Physics::LatticeConformal anomalyHigh Energy Physics::PhenomenologyFOS: Physical sciencesComputer Science::Digital Libraries01 natural sciencesRenormalizationTheoretical physicsPair productionHigh Energy Physics - Theory (hep-th)Regularization (physics)Electric field0103 physical sciences010306 general physicsAdiabatic processPhysical Review D
researchProduct

Adiabatic regularization for Dirac fields in time-varying electric backgrounds

2020

The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four spacetime dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion u…

High Energy Physics - TheoryPhysics010308 nuclear & particles physicsConformal anomalyScalar (mathematics)FOS: Physical sciencesField strengthGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsElectric fieldRegularization (physics)0103 physical sciences010306 general physicsAdiabatic processAnsatzVector potentialPhysical Review
researchProduct

Adiabatic regularization and particle creation for spin one-half fields

2013

The extension of the adiabatic regularization method to spin-$1/2$ fields requires a self-consistent adiabatic expansion of the field modes. We provide here the details of such expansion, which differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of the adiabatic renormalization scheme to spin-$1/2$ fields. We focus on the computation of particle production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy tensor for Dirac fermions.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Quantum field theory in curved spacetimeFOS: Physical sciencesFísicaGeneral Relativity and Quantum Cosmology (gr-qc)Mathematical Physics (math-ph)Adiabatic quantum computationGeneral Relativity and Quantum CosmologyWKB approximationRenormalizationsymbols.namesakeGeneral Relativity and Quantum CosmologyClassical mechanicsHigh Energy Physics - Theory (hep-th)Dirac fermionRegularization (physics)symbolsAdiabatic processMathematical PhysicsAstrophysics - Cosmology and Nongalactic AstrophysicsMathematical physicsAnsatz
researchProduct