Search results for "Dichroism"

showing 10 items of 471 documents

Use of Density Functional Based Tight Binding Methods in Vibrational Circular Dichroism.

2018

Vibrational circular dichroism (VCD) is a spectroscopic technique used to resolve the absolute configuration of chiral systems. Obtaining a theoretical VCD spectrum requires computing atomic polar and axial tensors on top of the computationally demanding construction of the force constant matrix. In this study we evaluated a VCD model in which all necessary quantities are obtained with density functional based tight binding (DFTB) theory. The analyzed DFTB parametrizations fail at providing accurate vibrational frequencies and electric dipole gradients but yield reasonable normal modes at a fraction of the computational cost of density functional theory (DFT). Thus, by applying DFTB in comp…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyChemistryQUÍMICA QUÂNTICA02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsSpectral line0104 chemical sciencesDipoleTight bindingNormal modeYield (chemistry)Vibrational circular dichroismPolarDensity functional theorySDG 7 - Affordable and Clean EnergyPhysical and Theoretical Chemistry0210 nano-technologyThe journal of physical chemistry. A
researchProduct

Magnetization reversal of the domain structure in the anti-perovskite nitride Co3FeN investigated by high-resolution X-ray microscopy

2016

We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co3FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy, present in nano…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainGeneral Physics and AstronomyMagnetic resonance force microscopyLarge scale facilities for research with photons neutrons and ions02 engineering and technology021001 nanoscience & nanotechnologyMagnetic hysteresis01 natural sciencesMagnetic susceptibilityCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyX-ray magnetic circular dichroism0103 physical sciencesMagnetic force microscope0210 nano-technologyJournal of Applied Physics
researchProduct

How water-soluble chlorophyll protein extracts chlorophyll from membranes.

2020

Water-soluble chlorophyll proteins (WSCPs) found in Brassicaceae are non-photosynthetic proteins that bind only a small number of chlorophylls. Their biological function remains unclear, but recent data indicate that WSCPs are involved in stress response and pathogen defense as producers of reactive oxygen species and/or Chl-regulated protease inhibitors. For those functions, WSCP apoprotein supposedly binds Chl to become physiologically active or inactive, respectively. Thus, Chl-binding seems to be a pivotal step for the biological function of WSCP. WSCP can extract Chl from the thylakoid membrane but little is known about the mechanism of how Chl is sequestered from the membrane into the…

0106 biological sciences0301 basic medicineChlorophyllCircular dichroismHot Temperaturemedicine.medical_treatmentBiophysicsmacromolecular substances01 natural sciencesBiochemistryLepidiumThylakoids03 medical and health scienceschemistry.chemical_compoundpolycyclic compoundsmedicineBinding sitePlant Proteinschemistry.chemical_classificationReactive oxygen speciesProteasefood and beveragesMembrane ProteinsWaterCell BiologyAmino acid030104 developmental biologyMembraneBiochemistrychemistrySolubilityThylakoidChlorophyll010606 plant biology & botanyBiochimica et biophysica acta. Biomembranes
researchProduct

New insights into the mechanism of action of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives endowed with anticancer potential

2018

Due to the scarce biological profile, the pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one scaffold (PBT) has been recently explored as promising core for potential anticancer candidates. Several suitably decorated derivatives (PBTs) exhibited antiproliferative activity in the low-micromolar range associated with apoptosis induction and cell cycle arrest on S phase. Herein, we selected the most active derivatives and submitted them to further biological explorations to deepen the mechanism of action. At first, a DNA targeting is approached by means of flow Linear Dichroism experiments so as to evaluate how small planar molecules might interact with DNA, including the interference with the catal…

0301 basic medicineCell cycle checkpointPyrazolo[1TetrazolesBiochemistrychemistry.chemical_compound0302 clinical medicineSalmonAntiproliferative; DNA-interacting; Intercalation; Linear dichroism; Molecular docking; Pyrazolo[12-a]benzo[1234]tetrazin-3-one; Topoisomerase II; Biochemistry; Molecular MedicineDrug DiscoveryDNA-interactingBase PairingADMEbiologyIntercalating AgentsMolecular Docking Simulation030220 oncology & carcinogenesisMolecular Medicinemedicine.symptomtopoisomerase II3StereochemistryIn silico2Antineoplastic Agentslinear dichroism03 medical and health sciencesantiproliferativeintercalationmedicineAnimalsHumansDNA Cleavage2-a]benzo[1Pharmacology4]tetrazin-3-oneBinding SitesTopoisomeraseOrganic ChemistryDNAmolecular dockingSettore CHIM/08 - Chimica FarmaceuticaChemical spaceProtein Structure TertiaryDNA Topoisomerases Type II030104 developmental biologyMechanism of actionchemistryCatalytic cyclebiology.proteinpyrazolo[12-a]benzo[1234]tetrazin-3-oneDNAChemical Biology & Drug Design
researchProduct

Ethanol Controls the Self-Assembly and Mesoscopic Properties of Human Insulin Amyloid Spherulites.

2018

Protein self-assembly into amyloid fibrils or highly hierarchical superstructures is closely linked to neurodegenerative pathologies as Alzheimer's and Parkinson's diseases. Moreover, protein assemblies also emerged as building blocks for bioinspired nanostructured materials. In both the above mentioned fields, the main challenge is to control the growth and properties of the final protein structure. This relies on a more fundamental understanding of how interactions between proteins can determine structures and functions of biomolecular aggregates. Here, we identify a striking effect of the hydration of the single human insulin molecule and solvent properties in controlling hydrophobicity/…

0301 basic medicineCircular dichroismAmyloidAmyloidInsulins02 engineering and technologyMicroscopy Atomic Force03 medical and health scienceschemistry.chemical_compoundProtein structureMicroscopy Electron TransmissionScattering Small AngleSpectroscopy Fourier Transform InfraredMaterials ChemistryMoleculeHumansPhysical and Theoretical ChemistryAMYLOID SPECTROSOPY FLUORECENCE MICROSCOPYMesoscopic physicsEthanolMicroscopy ConfocalEthanolChemistryCircular DichroismOptical Imaging021001 nanoscience & nanotechnologySurfaces Coatings and FilmsNeutron Diffraction030104 developmental biologySpheruliteBiophysics0210 nano-technologySuperstructure (condensed matter)Hydrophobic and Hydrophilic Interactions
researchProduct

Study of interaction of antimutagenic 1,4-dihydropyridine AV-153-Na with DNA-damaging molecules and its impact on DNA repair activity

2018

Background1,4-dihydropyridines (1,4-DHP) possesses important biochemical and pharmacological properties, including antioxidant and antimutagenic activities. It was shown that the antimutagenic 1,4-dihydropyridine AV-153-Na interacts with DNA. The aim of the current study was to test the capability of the compound to scavenge peroxynitrite and hydroxyl radical, to test intracellular distribution of the compound, and to assess the ability of the compound to modify the activity of DNA repair enzymes and to protect the DNA in living cells against peroxynitrite-induced damage.MethodsPeroxynitrite decomposition was assayed by UV spectroscopy, hydroxyl radical scavenging—by EPR spectroscopy. DNA b…

0301 basic medicineCircular dichroismDNA repairDNA damageBiophysicsDNA repairlcsh:MedicineGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceschemistry.chemical_compoundAV-153-Na0302 clinical medicineFluorescence microscopeMolecular Biology14-dihydropyridineschemistry.chemical_classificationGeneral Neurosciencelcsh:RGeneral MedicineCell Biology030104 developmental biologyEnzymechemistry030220 oncology & carcinogenesisBiophysicsHydroxyl radicalGeneral Agricultural and Biological SciencesDNAPeroxynitritePeerJ
researchProduct

2019

The DNA-binding of the natural benzophenanthridine alkaloid chelerythrine (CHE) has been assessed by combining molecular modeling and optical absorption spectroscopy. Specifically, both double-helical (B-DNA) and G-quadruplex sequences—representative of different topologies and possessing biological relevance, such as telomeric or regulatory sequences—have been considered. An original multiscale protocol, making use of molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, allowed us to compare the theoretical and experimental circular dichroism spectra of the different DNA topologies, readily providing atomic-level details of the CHE–DNA binding…

0301 basic medicineCircular dichroismMolecular modelPhysiologyChemistryClinical BiochemistryCell Biology010402 general chemistryG-quadruplex01 natural sciencesBiochemistryMolecular mechanicsSmall molecule0104 chemical sciences3. Good health03 medical and health sciencesMolecular dynamicschemistry.chemical_compound030104 developmental biologyChelerythrineComputational chemistryMolecular BiologyBinding selectivityAntioxidants
researchProduct

Secondary structure and dynamics study of the intrinsically disordered silica-mineralizing peptide P5S3during silicic acid condensation and silica de…

2017

The silica forming repeat R5 of sil1 from Cylindrotheca fusiformis was the blueprint for the design of P5 S3 , a 50-residue peptide which can be produced in large amounts by recombinant bacterial expression. It contains 5 protein kinase A target sites and is highly cationic due to 10 lysine and 10 arginine residues. In the presence of supersaturated orthosilicic acid P5 S3 enhances silica-formation whereas it retards the dissolution of amorphous silica (SiO2 ) at globally undersaturated concentrations. The secondary structure of P5 S3 during these 2 processes was studied by circular dichroism (CD) spectroscopy, complemented by nuclear magnetic resonance (NMR) spectroscopy of the peptide in …

0301 basic medicineCircular dichroismProtein ConformationSilicic AcidPeptideMolecular Dynamics SimulationSodium Chloride010402 general chemistry01 natural sciencesBiochemistryArticle03 medical and health scienceschemistry.chemical_compoundStructural BiologyPolymer chemistryOrganic chemistrySilicic acidNuclear Magnetic Resonance BiomolecularMolecular BiologyDissolutionProtein secondary structurePolyproline helixchemistry.chemical_classificationNuclear magnetic resonance spectroscopySilicon Dioxide0104 chemical sciencesIntrinsically Disordered Proteins030104 developmental biologychemistryPolymerizationPeptidesProteins: Structure, Function, and Bioinformatics
researchProduct

[Au(9-methylcaffein-8-ylidene) 2 ] + /DNA Tel23 System: Solution, Computational, and Biological Studies

2017

International audience; Physicochemical methods have been used to investigate interactions occurring in solution between the dicarbene gold(I) complex [Au(9‐methylcaffein‐8‐ylidene)2]BF4 (AuNHC) and a human telomeric DNA sequence, namely Tel23. Circular dichroism measurements allow identification of the conformational changes experienced by Tel23 upon interaction with AuNHC, and the respective binding stoichiometries and constants were determined. Computational studies provide a good link between previous crystallographic results of the same system and the present solution data, offering an exhaustive description of the inherent noncovalent metallodrug–DNA interactions. Remarkably, we found…

0301 basic medicineCircular dichroismSequence (biology)G-quadruplextelomerasehuman telomeric dnaCatalysisantitumor agentsk+ solutionAdductg-quadruplex structures03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundanticancer agentsDNA structuresgold carbenes[CHIM]Chemical SciencesBinding sitechemistry.chemical_classificationcomplexesdensityligand-bindingChemistryOrganic Chemistrystructural basisGeneral ChemistrysequenceCombinatorial chemistryG-quadruplexescircular dichroismcircular-dichroism030104 developmental biologyEnzymeDNA
researchProduct

Structure and Stability of Hsp60 and Groel in Solution

2016

Molecular chaperones are a class of proteins able to prevent non-specific aggregation of mitochondrial proteins and to promote their proper folding. Among them, human Hsp60 is currently considered as a ubiquitous molecule with multiple roles both in maintaining health conditions and as a trigger of several diseases. Of particular interest is its role in neurodegenerative disorders since it is able to inhibit the formation of amyloid fibrils.Hsp60 structure was considered, until recent years, analogue to the one of its bacterial homolog GroEL, one of the most investigated chaperones, whose crystallographic structure is a homo-tetradecamer, made up of two seven member rings. On the contrary, …

0301 basic medicineCircular dichroismSmall-angle X-ray scatteringBiophysicsGroELDissociation (chemistry)03 medical and health scienceschemistry.chemical_compoundCrystallographyMolecular dynamics030104 developmental biologyMonomerchemistryBiophysicsMoleculeHSP60Biophysical Journal
researchProduct