Search results for "Diffeomorphisms"
showing 10 items of 11 documents
Towards a global view of dynamical systems, for the C1-topology.
2010
This paper suggests a program for getting a global view of the dynamics of diffeomorphisms, from the point of view of the C1-topology. More precisely, given any compact manifold M, one splits Diff1(M) in disjoint C1-open regions whose union is C1-dense, and conjectures state that these open set, and their complement, are characterized by the presence of • either a robust local phenomenon • or a global structure forbiding this local phenomenon. Other conjectures states that some of these regions are empty. This set of conjectures draws a global view of the dynamics, putting in evidence the coherence of the numerous recent results on C1-generic dynamics.
Conjugate unstable manifolds and their underlying geometrized Markov partitions
2000
Abstract Conjugate unstable manifolds of saturated hyperbolic sets of Smale diffeomorphisms are characterized in terms of the combinatorics of their geometrized Markov partitions. As a consequence, the relationship between the local and the global point of view is also made explicit.
Anomalous Anosov flows revisited
2017
This paper is devoted to higher dimensional Anosov flows and consists of two parts. In the first part, we investigate fiberwise Anosov flows on affine torus bundles which fiber over 3-dimensional Anosov flows. We provide a dichotomy result for such flows --- they are either suspensions of Anosov diffeomorphisms or the stable and unstable distributions have equal dimensions. In the second part, we give a new surgery type construction of Anosov flows, which yields non-transitive Anosov flows in all odd dimensions.
Seifert manifolds admitting partially hyperbolic diffeomorphisms
2017
We characterize which 3-dimensional Seifert manifolds admit transitive partially hyperbolic diffeomorphisms. In particular, a circle bundle over a higher-genus surface admits a transitive partially hyperbolic diffeomorphism if and only if it admits an Anosov flow.
Building Anosov flows on $3$–manifolds
2014
We prove a result allowing to build (transitive or non-transitive) Anosov flows on 3-manifolds by gluing together filtrating neighborhoods of hyperbolic sets. We give several applications; for example: 1. we build a 3-manifold supporting both of a transitive Anosov vector field and a non-transitive Anosov vector field; 2. for any n, we build a 3-manifold M supporting at least n pairwise different Anosov vector fields; 3. we build transitive attractors with prescribed entrance foliation; in particular, we construct some incoherent transitive attractors; 4. we build a transitive Anosov vector field admitting infinitely many pairwise non-isotopic trans- verse tori.
Dirac physical measures for generic diffeomorphisms
2016
We prove that, for a $C^1$ generic diffeomorphism, the only Dirac physical measures with dense statistical basin are those supported on sinks.
The Fatou coordinate for parabolic Dulac germs
2017
We study the class of parabolic Dulac germs of hyperbolic polycycles. For such germs we give a constructive proof of the existence of a unique Fatou coordinate, admitting an asymptotic expansion in the power-iterated log scale.
Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples
2016
We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism $f$ on a closed $3$-manifold with exponential growth in its fundamental group such that $f^n$ is not isotopic to the identity for all $n\neq 0$. This example contradicts a conjecture in \cite{HHU}. The main idea is to consider a well-understood time-$t$ map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.
Hyperbolicity as an obstruction to smoothability for one-dimensional actions
2017
Ghys and Sergiescu proved in the $80$s that Thompson's group $T$, and hence $F$, admits actions by $C^{\infty}$ diffeomorphisms of the circle . They proved that the standard actions of these groups are topologically conjugate to a group of $C^\infty$ diffeomorphisms. Monod defined a family of groups of piecewise projective homeomorphisms, and Lodha-Moore defined finitely presentable groups of piecewise projective homeomorphisms. These groups are of particular interest because they are nonamenable and contain no free subgroup. In contrast to the result of Ghys-Sergiescu, we prove that the groups of Monod and Lodha-Moore are not topologically conjugate to a group of $C^1$ diffeomorphisms. Fur…
Topological classification of gradient-like diffeomorphisms on 3-manifolds
2004
Abstract We give a complete invariant, called global scheme , of topological conjugacy classes of gradient-like diffeomorphisms, on compact 3-manifolds. Conversely, we can realize any abstract global scheme by such a diffeomorphism.