Search results for "Differentiable function"
showing 10 items of 75 documents
Star Products on Coadjoint Orbits
2000
We study properties of a family of algebraic star products defined on coadjoint orbits of semisimple Lie groups. We connect this description with the point of view of differentiable deformations and geometric quantization.
Active Brownian Motion Models and Applications to Ratchets
2008
We give an overview over recent studies on the model of Active Brownian Motion (ABM) coupled to reservoirs providing free energy which may be converted into kinetic energy of motion. First, we present an introduction to a general concept of active Brownian particles which are capable to take up energy from the source and transform part of it in order to perform various activities. In the second part of our presentation we consider applications of ABM to ratchet systems with different forms of differentiable potentials. Both analytical and numerical evaluations are discussed for three cases of sinusoidal, staircase-like and Mateos ratchet potentials, also with the additional loads modeled by…
Absolutely continuous functions in Rn
2005
Abstract For each 0 α 1 we consider a natural n-dimensional extension of the classical notion of absolute continuous function. We compare it with the Malý's and Hencl's definitions. It follows that each α-absolute continuous function is continuous, weak differentiable with gradient in L n , differentiable almost everywhere and satisfies the formula on change of variables.
On exotic affine 3-spheres
2014
Every A 1 \mathbb {A}^{1} -bundle over A ∗ 2 , \mathbb {A}_{\ast }^{2}, the complex affine plane punctured at the origin, is trivial in the differentiable category, but there are infinitely many distinct isomorphy classes of algebraic bundles. Isomorphy types of total spaces of such algebraic bundles are considered; in particular, the complex affine 3 3 -sphere S C 3 , \mathbb {S}_{\mathbb {C}}^{3}, given by z 1 2 + z 2 2 + z 3 2 + z 4 2 = 1 , z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=1, admits such a structure with an additional homogeneity property. Total spaces of nontrivial homogeneous A 1 \mathbb {A}^{1} -bundles over A ∗ 2 \mathbb {A}_{\ast }^{2} are classified up to G m \mathbb {G}_{m}…
Fine properties of functions with bounded variation in Carnot-Carathéodory spaces
2019
Abstract We study properties of functions with bounded variation in Carnot-Caratheodory spaces. We prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R , we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative.
Absolutely continuous functions and differentiability in Rn
2002
Abstract We relativize the notion of absolute continuity of functions in R n , due to Rado, Reichelderfer and Malý, to subsets of R n and use it to characterize functions (possibly vector valued) differentiable almost everywhere.
A min-max principle for non-differentiable functions with a weak compactness condition
2009
A general critical point result established by Ghoussoub is extended to the case of locally Lipschitz continuous functions satisfying a weak Palais-Smale hypothesis, which includes the so-called non-smooth Cerami condition. Some special cases are then pointed out.
On the Minimal Solution of the Problem of Primitives
2000
Abstract We characterize the primitives of the minimal extension of the Lebesgue integral which also integrates the derivatives of differentiable functions (called the C -integral). Then we prove that each BV function is a multiplier for the C -integral and that the product of a derivative and a BV function is a derivative modulo a Lebesgue integrable function having arbitrarily small L 1 -norm.
Universal differentiability sets and maximal directional derivatives in Carnot groups
2019
We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of f at a point x implies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.
Discontinuous, although “highly” differentiable, real functions and algebraic genericity
2021
Abstract We exhibit a class of functions f : R → R which are bounded, continuous on R ∖ Q , left discontinuous on Q , right differentiable on Q , and upper left Dini differentiable on R ∖ Q . Other properties of these functions, such as jump sizes and local extrema, are also discussed. These functions are constructed using probabilistic methods. We also show that the families of functions satisfying similar properties contain large algebraic structures (obtaining lineability, algebrability and coneability).