Search results for "Differential equations"

showing 10 items of 169 documents

Ambit processes and stochastic partial differential equations

2011

Ambit processes are general stochastic processes based on stochastic integrals with respect to Levy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection between ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Levy noise analysis.

Continuous-time stochastic processwhite noise analysisambit processesstochastic partial differential equationsStochastic modellingMathematical analysisStochastic calculusMalliavin calculusStochastic partial differential equationStochastic differential equationmartingale measuresMathematics::ProbabilityLocal martingaleLévy basesApplied mathematicsMartingale (probability theory)Mathematics
researchProduct

Convergence Theorems for Varying Measures Under Convexity Conditions and Applications

2022

AbstractIn this paper, convergence theorems involving convex inequalities of Copson’s type (less restrictive than monotonicity assumptions) are given for varying measures, when imposing convexity conditions on the integrable functions or on the measures. Consequently, a continuous dependence result for a wide class of differential equations with many interesting applications, namely measure differential equations (including Stieltjes differential equations, generalized differential problems, impulsive differential equations with finitely or countably many impulses and also dynamic equations on time scales) is provided.

Convergence of measuresconvex inequalitymeasure differential equationsSettore MAT/05 - Analisi MatematicaGeneral Mathematicscontinuous dependence
researchProduct

The body-mind problem from a personality relativity theory approach: (Relativity of personality)

2012

The body-mind problem is here posed fromthe General Factor of Personality Theory and mathematically presented as a relativity theory: 1. A two-level-invariant model; 2. The transformation equation between both levels. On a hand, the investigation of personality dynamicsas a consequenceof a stimulant drug provides a system of two coupled differential equations, which adapts to both biological (body) and psychological (mind)levels ofdescription. On the other hand, a system of two coupled partial differential equations is here deduced as the transformation model between the biological and psychological levels. Both models are presented and validated in this paper. The experimental design to va…

Coupled differential equationsPartial differential equationTheory of relativityTransformation (function)media_common.quotation_subjectPersonalityTransformation equationHierarchical structure of the Big FiveMeasure (mathematics)MathematicsCognitive psychologymedia_common2012 IEEE International Conference on Complex Systems (ICCS)
researchProduct

Indefinite integrals of special functions from hybrid equations

2019

Elementary linear first and second order differential equations can always be constructed for twice differentiable functions by explicitly including the function's derivatives in the definition of ...

Differential equationApplied Mathematics010102 general mathematics010103 numerical & computational mathematicsFunction (mathematics)01 natural sciencesLegendre functionSecond order differential equationssymbols.namesakeSpecial functionssymbolsApplied mathematicsDifferentiable function0101 mathematicsComputer Science::DatabasesAnalysisBessel functionMathematicsIntegral Transforms and Special Functions
researchProduct

Global Non-monotonicity of Solutions to Nonlinear Second-Order Differential Equations

2018

We study behavior of solutions to two classes of nonlinear second-order differential equations with a damping term. Sufficient conditions for the first derivative of a solution x(t) to change sign at least once in a given interval (in a given infinite sequence of intervals) are provided. These conditions imply global non-monotone behavior of solutions.

Differential equationGeneral Mathematics010102 general mathematicsMonotonic functionInterval (mathematics)01 natural sciencesNonlinear differential equationsTerm (time)010101 applied mathematicsSecond order differential equationsNonlinear systemApplied mathematics0101 mathematicsNonlinear differential equations ; non-monotone behaviour ; second order ; damping term ; reciprocal equationSign (mathematics)MathematicsMediterranean Journal of Mathematics
researchProduct

An Application of the Fixed Point Theory to the Study of Monotonic Solutions for Systems of Differential Equations

2020

In this paper, we establish some conditions for the existence and uniqueness of the monotonic solutions for nonhomogeneous systems of first-order linear differential equations, by using a result of the fixed points theory for sequentially complete gauge spaces.

Differential equationfixed point theorylcsh:MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisFixed-point theoremMonotonic functionGauge (firearms)Fixed pointlcsh:QA1-939sequentially complete gauge spaces.01 natural sciences010101 applied mathematicsLinear differential equationComputer Science (miscellaneous)systems of differential equationsexistence and uniqueness theoremsUniqueness0101 mathematicsEngineering (miscellaneous)monotonic solutionsMathematicsMathematics
researchProduct

Matemātika

1994

Differential equationsLoģikaFunkcionālanalīzeAlgebraFunctional analysis:MATHEMATICS [Research Subject Categories]TopoloģijaAproksimāciju teorijaMatemātikaApproximation theoryDiferenciālvienādojumiLogicsTopology
researchProduct

On critical behaviour in generalized Kadomtsev-Petviashvili equations

2016

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

Differential equationsShock waveSpecial solutionBlow-upKadomtsev–Petviashvili equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Mathematics::Analysis of PDEsFOS: Physical sciencesPainlevé equationsKadomtsev-Petviashvili equationsKadomtsev–Petviashvili equation01 natural sciences010305 fluids & plasmasShock wavesDispersive partial differential equationMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsCritical behaviourLong-time behaviourSupercriticalDispersion (waves)0101 mathematicsKP equationSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical physicsKadomtsev-Petviashvili equationPainleve equationsConjectureNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisDispersive shocks Kadomtsev–Petviashvili equations Painlevé equations Differential equations Dispersion (waves) Ordinary differential equations Shock waves Blow-up Critical behaviour Dispersive shocks Kadomtsev-Petviashvili equation KP equation Long-time behaviour Special solutions Supercritical Partial differential equationsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsDispersive shocksPartial differential equationsNonlinear Sciences::Exactly Solvable and Integrable SystemsOrdinary differential equationSpecial solutions[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Exactly Solvable and Integrable Systems (nlin.SI)Ordinary differential equationsAnalysis of PDEs (math.AP)
researchProduct

Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data

2018

We prove boundedness and continuity for solutions to the Dirichlet problem for the equation $$ - {\rm{div}}(a(x,\nabla u)) = h(x,u) + \mu ,\;\;\;\;\;{\rm{in}}\;{\rm{\Omega }} \subset \mathbb{R}^{N},$$ where the left-hand side is a Leray-Lions operator from $$- {W}^{1,p}_0(\Omega)$$ into W−1,p′(Ω) with 1 < p < N, h(x,s) is a Caratheodory function which grows like ∣s∣p−1 and μ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Holder-continuous far from the support of μ.

Dirichlet problemElliptic partial differential equations; boundary-value problems; regularity; Hölder-continuityregularityOperator (physics)boundary-value problemsElliptic partial differential equationsHölder-continuityMeasure (mathematics)OmegaCombinatoricsBounded functionRadon measurep-LaplacianNabla symbolMathematics
researchProduct

A Mesh-free Particle Method for Transient Full-wave Simulation

2007

A mesh-free particle method is presented for electromagnetic (EM) transient simulation. The basic idea is to obtain numerical solutions for the partial differential equations describing the EM problem in time domain, by using a set of particles, considered as spatial interpolation points of the field variables, arbitrarily placed in the problem domain and by avoiding the use of a regular mesh. Irregular problems geometry with diffused non-homogeneous media can be modeled only with an initial set of arbitrarily distributed particles. The time dependence is accounted for with an explicit finite difference scheme. Moreover the particle discretization can be improved during the process time ste…

DiscretizationComputational complexity theoryElectromagnetic (EM) transient analysiComputer scienceNumerical methodMultivariate interpolationReduction (complexity)Settore MAT/08 - Analisi NumericaElectromagnetic waveFull waveTime domainElectrical and Electronic EngineeringPhysicsPartial differential equationMathematical analysisFinite difference methodComputer simulationPartial differential equationsMesh freeInterpolationElectronic Optical and Magnetic MaterialsComputational complexitySmoothed particle interpolationSettore ING-IND/31 - ElettrotecnicaParticleComputational electromagneticsTransient (oscillation)Mesh-free particle methodInterpolation2006 12th Biennial IEEE Conference on Electromagnetic Field Computation
researchProduct