Search results for "Dimensionality reduction"
showing 10 items of 120 documents
Semisupervised kernel orthonormalized partial least squares
2012
This paper presents a semisupervised kernel orthonormalized partial least squares (SS-KOPLS) algorithm for non-linear feature extraction. The proposed method finds projections that minimize the least squares regression error in Hilbert spaces and incorporates the wealth of unlabeled information to deal with small size labeled datasets. The method relies on combining a standard RBF kernel using labeled information, and a generative kernel learned by clustering all available data. The positive definiteness of the kernels is proven, and the structure and information content of the derived kernels is studied. The effectiveness of the proposed method is successfully illustrated in standard UCI d…
Applying fully tensorial ICA to fMRI data
2016
There are two aspects in functional magnetic resonance imaging (fMRI) data that make them awkward to analyse with traditional multivariate methods - high order and high dimension. The first of these refers to the tensorial nature of observations as array-valued elements instead of vectors. Although this can be circumvented by vectorizing the array, doing so simultaneously loses all the structural information in the original observations. The second aspect refers to the high dimensionality along each dimension making the concept of dimension reduction a valuable tool in the processing of fMRI data. Different methods of tensor dimension reduction are currently gaining popUlarity in literature…
Using affinity perturbations to detect web traffic anomalies
2013
The initial training phase of machine learning algorithms is usually computationally expensive as it involves the processing of huge matrices. Evolving datasets are challenging from this point of view because changing behavior requires updating the training. We propose a method for updating the training profile efficiently and a sliding window algorithm for online processing of the data in smaller fractions. This assumes the data is modeled by a kernel method that includes spectral decomposition. We demonstrate the algorithm with a web server request log where an actual intrusion attack is known to happen. Updating the kernel dynamically using a sliding window technique, prevents the proble…
Beyond Tandem Analysis: Joint Dimension Reduction and Clustering in R
2019
We present the R package clustrd which implements a class of methods that combine dimension reduction and clustering of continuous or categorical data. In particular, for continuous data, the package contains implementations of factorial K-means and reduced K-means; both methods combine principal component analysis with K-means clustering. For categorical data, the package provides MCA K-means, i-FCB and cluster correspondence analysis, which combine multiple correspondence analysis with K-means. Two examples on real data sets are provided to illustrate the usage of the main functions.
Application of Electronic Nose for Evaluation of Wastewater Treatment Process Effects at Full-Scale WWTP
2019
This paper presents the results of studies aiming at the assessment and classification of wastewater using an electronic nose. During the experiment, an attempt was made to classify the medium based on an analysis of signals from a gas sensor array, the intensity of which depended on the levels of volatile compounds in the headspace gas mixture above the wastewater table. The research involved samples collected from the mechanical and biological treatment devices of a full-scale wastewater treatment plant (WWTP), as well as wastewater analysis. The measurements were carried out with a metal-oxide-semiconductor (MOS) gas sensor array, when coupled with a computing unit (e.g., a computer with…
Large-scale nonlinear dimensionality reduction for network intrusion detection
2017
International audience; Network intrusion detection (NID) is a complex classification problem. In this paper, we combine classification with recent and scalable nonlinear dimensionality reduction (NLDR) methods. Classification and DR are not necessarily adversarial, provided adequate cluster magnification occurring in NLDR methods like $t$-SNE: DR mitigates the curse of dimensionality, while cluster magnification can maintain class separability. We demonstrate experimentally the effectiveness of the approach by analyzing and comparing results on the big KDD99 dataset, using both NLDR quality assessment and classification rate for SVMs and random forests. Since data involves features of mixe…
Knowledge discovery using diffusion maps
2013
Information-theoretic assessment of cardiovascular-brain networks during sleep
2015
This study was aimed at detecting the structure of the physiological network underlying the regulation of the cardiovascular and brain systems during normal sleep. To this end, we measured from the polysomnographic recordings of 10 healthy subjects the normalized spectral power of heart rate variability in the high frequency band (HF) and the EEG power in the δ, θ, α, σ, and β bands. Then, the causal statistical dependencies within and between these six time series were assessed in terms of internal information (conditional self entropy, CSE) and information transfer (transfer entropy, TE) computed via a linear method exploiting multiple regression models and a nonlinear method combining ne…
A visualization technique for accessing solution pool in interactive methods of multiobjective optimization
2015
<pre>Interactive methods of <span>multiobjective</span> optimization repetitively derive <span>Pareto</span> optimal solutions based on decision maker's preference information and present the obtained solutions for his/her consideration. Some interactive methods save the obtained solutions into a solution pool and, at each iteration, allow the decision maker considering any of solutions obtained earlier. This feature contributes to the flexibility of exploring the <span>Pareto</span> optimal set and learning about the optimization problem. However, in the case of many objective functions, the accumulation of derived solutions makes accessing the sol…