Search results for "Directed mutagenesis"

showing 10 items of 29 documents

Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches

2013

The tyrosinase gene from Ralstonia solanacearum (GenBank NP518458) was subjected to random mutagenesis resulting in tyrosinase variants (RVC10 and RV145) with up to 3.2-fold improvement in kcat, 5.2-fold lower Km and 16-fold improvement in catalytic efficiency for D-tyrosine. Based on RVC10 and RV145 mutated sequences, single mutation variants were generated with all variants showing increased kcat for D-tyrosine compared to the wild type (WT). All single mutation variants based on RV145 had a higher kcat and Km value compared to the RV145 and thus the combination of four mutations in RV145 was antagonistic for turnover, but synergistic for affinity of the enzyme for D-tyrosine. Single muta…

DNA BacterialProtein ConformationSequence analysisTyrosinasehomology modelingMolecular Sequence DataMutation Missenserandom mutagenesisBioengineeringtyrosinaseProtein Engineering010402 general chemistry01 natural sciencesApplied Microbiology and Biotechnologyenzyme catalysis03 medical and health sciencessite specific mutagenesisMissense mutationSite-directed mutagenesisHistidine030304 developmental biology0303 health sciencesRalstonia solanacearumbiologyMonophenol MonooxygenaseWild typeActive siteSequence Analysis DNAbiology.organism_classificationMolecular biologyRecombinant Proteins0104 chemical sciencesKineticsMutagenesisRalstonia solanacearumbiology.proteinTyrosineD-tyrosineMutant ProteinsBiotechnology
researchProduct

Homemade Site Directed Mutagenesis of Whole Plasmids

2009

Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensi…

GeneticsGeneral Immunology and MicrobiologyGeneral Chemical EngineeringGeneral NeuroscienceMutagenesis (molecular biology technique)Biologymedicine.disease_causeGeneral Biochemistry Genetics and Molecular BiologyPfu polymeraseTransformation (genetics)PlasmidMutation (genetic algorithm)Escherichia coliMutagenesis Site-DirectedmedicineTransformation BacterialTarget geneBasic ProtocolsSite-directed mutagenesisEscherichia coliPlasmidsJournal of Visualized Experiments
researchProduct

Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies

2010

The fitness effects of mutations are central to evolution, yet have begun to be characterized in detail only recently. Site-directed mutagenesis is a powerful tool for achieving this goal, which is particularly suited for viruses because of their small genomes. Here, I discuss the evolutionary relevance of mutational fitness effects and critically review previous site-directed mutagenesis studies. The effects of single-nucleotide substitutions are standardized and compared for five RNA or single-stranded DNA viruses infecting bacteria, plants or animals. All viruses examined show very low tolerance to mutation when compared with cellular organisms. Moreover, for non-lethal mutations, the me…

GeneticsbiologyDNA VirusesDNA Single-StrandedRNARobustness (evolution)Articlesbiology.organism_classificationGenomeGeneral Biochemistry Genetics and Molecular BiologyVirusEvolution Molecularchemistry.chemical_compoundchemistryViral evolutionMutagenesis Site-DirectedRNA VirusesGeneral Agricultural and Biological SciencesSite-directed mutagenesisBacteriaDNAPhilosophical Transactions of the Royal Society B: Biological Sciences
researchProduct

Probing suggested catalytic domains of glycosyltransferases by site-directed mutagenesis.

2003

The plant enzyme arbutin synthase isolated from cell suspension cultures of Rauvolfia serpentina and heterologously expressed in Escherichia coli is a member of the NRD1beta family of glycosyltransferases. This enzyme was used to prove, by site-directed mutagenesis, suggested catalytic domains and reaction mechanisms proposed for enzyme-catalyzed glycosylation. Replacement of amino acids far from the NRD domain do not significantly affect arbutin synthase activity. Exchange of amino acids at the NRD site leads to a decrease of enzymatic activity, e.g. substitution of Glu368 by Asp. Glu368, which is a conserved amino acid in glycosyltransferases located at position 2 and is important for enz…

GlycosylationStereochemistryMolecular Sequence DataBiologyBiochemistryPolymerase Chain ReactionGene Expression Regulation EnzymologicRauwolfiaSubstrate Specificitychemistry.chemical_compoundCatalytic DomainGlycosyltransferaseEscherichia coliAmino Acid SequenceSite-directed mutagenesisConserved SequenceDNA Primerschemistry.chemical_classificationBinding SitesATP synthaseSequence Homology Amino AcidMutagenesisArbutinGlycosyltransferasesEnzyme assayRecombinant ProteinsAmino acidEnzymechemistryBiochemistryAmino Acid Substitutionbiology.proteinMutagenesis Site-DirectedEuropean journal of biochemistry
researchProduct

Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens

2011

Background: The sulfur oxygenase reductase (SOR) is the initial enzyme of the sulfur oxidation pathway in the thermoacidophilic Archaeon Acidianus ambivalens. The SOR catalyzes an oxygen-dependent sulfur disproportionation to H2S, sulfite and thiosulfate. The spherical, hollow, cytoplasmic enzyme is composed of 24 identical subunits with an active site pocket each comprising a mononuclear non-heme iron site and a cysteine persulfide. Substrate access and product exit occur via apolar chimney-like protrusions at the four-fold symmetry axes, via narrow polar pores at the three-fold symmetry axes and via narrow apolar pores within in each subunit. In order to investigate the function of the po…

Microbiology (medical)StereochemistrySulfur metabolismlcsh:QR1-502ReductaseMicrobiologylcsh:Microbiologychemistry.chemical_compoundOxidoreductaseStructural BiologySite-directed mutagenesisOriginal ResearchX-ray crystallographychemistry.chemical_classificationSite-directed mutagenesisbiologySulfur metabolismActive siteSubstrate (chemistry)ArchaeaEnzyme assaychemistryBiochemistryHyperthermophileIodoacetamidebiology.proteinFrontiers in Microbiology
researchProduct

Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site

2003

Epoxide hydrolases are essential for the processing of epoxide-containing compounds in detoxification or metabolism. The classic epoxide hydrolases have an alpha/beta hydrolase fold and act via a two-step reaction mechanism including an enzyme-substrate intermediate. We report here the structure of the limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis, solved using single-wavelength anomalous dispersion from a selenomethionine-substituted protein and refined at 1.2 A resolution. This enzyme represents a completely different structure and a novel one-step mechanism. The fold features a highly curved six-stranded mixed beta-sheet, with four alpha-helices packed onto it to create a …

Models MolecularAFSG Stafafdelingen (WUATV)10050 Institute of Pharmacology and Toxicologydrug protein bindingEnantioselectivityEpoxide hydrolaseCrystallography X-Rayuncultured actinomyceteCatalytic Domain2400 General Immunology and Microbiologyalpha helixRhodococcuscholesterol epoxide hydrolasenaphthalene 12-dioxygenasedcl14limonene 12 epoxide hydrolaseEpoxide hydrolaseBacteria (microorganisms)delta(5)-3-ketosteroid isomeraseEpoxide HydrolasesLimonene-12-epoxide hydrolaseGeneral Neurosciencearticle2800 General NeuroscienceActinobacteria (class)Articlesagrobacterium-radiobacterEnzyme structureRecombinant Proteinsunclassified drugenzyme structurereaction analysisBiochemistrypriority journalenzyme active siteMechanism2-dioxygenaseDimerizationBiotechnologychemical reactioncrystal structureaspergillus-nigermacromolecular structuresStereochemistrybeta sheetvalpromideMolecular Sequence Data610 Medicine & healthGenetics and Molecular BiologyBiologyGeneral Biochemistry Genetics and Molecular BiologyBacterial Proteinssite directed mutagenesis1300 General Biochemistry Genetics and Molecular BiologyHydrolase1312 Molecular BiologyAmino Acid SequencedetoxificationRhodococcus erythropolisBiologyMonoterpene degradationMolecular Biologyprotein data-bankenzyme substrate complexEnzyme substrate complexnonhumancatalysisSequence Homology Amino AcidGeneral Immunology and Microbiologybacterial enzymeActive sitecrystal-structureAFSG Staff Departments (WUATV)enzyme metabolismProtein SubunitsenzymeEpoxide HydrolasesGeneral Biochemistrybiology.proteinMutagenesis Site-Directed570 Life sciences; biologyselenomethioninenaphthalene 1Alpha helix
researchProduct

Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis

2008

We have recently reported that human soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a novel phosphatase enzymatic activity. Based on a structural relationship with other members of the haloacid dehalogenase superfamily, the sEH N-terminal phosphatase domain revealed four conserved sequence motifs, including the proposed catalytic nucleophile D9, and several other residues potentially implicated in substrate turnover and/or Mg(2+) binding. To enlighten the catalytic mechanism of dephosphorylation, we constructed sEH phosphatase active-site mutants by site-directed mutagenesis. A total of 18 mutants were constructed and recombinantly expressed in Escherichia coli as soluble pro…

Models MolecularEpoxide hydrolase 2Molecular Sequence DataPhosphatase10050 Institute of Pharmacology and Toxicology610 Medicine & healthMass SpectrometryPhosphatesDephosphorylation1315 Structural BiologyProtein structureStructural Biology1312 Molecular BiologyHumansPhosphofructokinase 2Amino Acid SequenceBinding siteProtein Structure QuaternarySite-directed mutagenesisMolecular BiologyEpoxide HydrolasesBinding SitesChemistrySubstrate (chemistry)Phosphoric Monoester HydrolasesRecombinant ProteinsProtein Structure TertiaryProtein SubunitsBiochemistryMutagenesis Site-Directed570 Life sciences; biologyDimerizationSequence AlignmentChromatography Liquid
researchProduct

Theoretical site-directed mutagenesis: Asp168Ala mutant of lactate dehydrogenase

2008

Molecular simulations based on the use of hybrid quantum mechanics/molecular mechanics methods are able to provide detailed information about the complex enzymatic reactions and the consequences of specific mutations on the activity of the enzyme. In this work, the reduction of pyruvate to lactate catalysed by wild-type and Asp168Ala mutant lactate dehydrogenase (LDH) has been studied by means of simulations using a very flexible molecular model consisting of the full tetramer of the enzyme, together with the cofactor NADH, the substrate and solvent water molecules. Our results indicate that the Asp168Ala mutation provokes a shift in the p K a value of Glu199 that becomes unprotonated at n…

Models MolecularMutantBiomedical EngineeringBiophysicsMutation MissenseBioengineeringBiochemistryMolecular mechanicsCofactorEnzyme catalysisBiomaterialschemistry.chemical_compoundLactate dehydrogenaseComputer SimulationSite-directed mutagenesisbiologyL-Lactate DehydrogenaseMolecular StructureWild typeSubstrate (chemistry)Computational BiologychemistryBiochemistrybiology.proteinBiophysicsMutagenesis Site-DirectedBiotechnologyResearch Article
researchProduct

Glutamate 270 plays an essential role in K+-activation and domain closure ofThermus thermophilusisopropylmalate dehydrogenase

2014

The mutant E270A of Thermus thermophilus 3-isopropylmalate dehydrogenase exhibits largely reduced (∼1%) catalytic activity and negligible activation by K(+) compared to the wild-type enzyme. A 3-4 kcal/mol increase in the activation energy of the catalysed reaction upon this mutation could also be predicted by QM/MM calculations. In the X-ray structure of the E270A mutant a water molecule was observed to take the place of K(+). SAXS and FRET experiments revealed the essential role of E270 in stabilisation of the active domain-closed conformation of the enzyme. In addition, E270 seems to position K(+) into close proximity of the nicotinamide ring of NAD(+) and the electron-withdrawing effect…

Models MolecularStereochemistry030303 biophysicsMutantBiophysicsGlutamic AcidLarge scale facilities for research with photons neutrons and ionsSmall angle X-ray scatteringDehydrogenaseBiochemistry3-Isopropylmalate Dehydrogenase03 medical and health scienceschemistry.chemical_compoundIsopropylmalate dehydrogenaseFluorescence resonance energy transferStructural BiologyOxidoreductaseGeneticsMolecular BiologyX-ray crystallography030304 developmental biologychemistry.chemical_classificationSite-directed mutagenesis0303 health sciencesNicotinamidebiologyThermus thermophilusActivation by K+Cell BiologyThermus thermophilusbiology.organism_classificationProtein Structure TertiaryMOPSEnzyme ActivationKineticsCrystallographyEnzymechemistryMutationNAD+ kinaseFEBS Letters
researchProduct

Staphylococcus aureus alpha-toxin. Production of functionally intact, site-specifically modifiable protein by introduction of cysteine at positions 6…

1993

Staphylococcal alpha-toxin, the prototype of an oligomerizing, pore-forming cytotoxin, is sensitive to biochemical modifications and cannot be labeled with biotin or fluorescein under preservation of its biological activity. In this study, we have used site-directed mutagenesis to introduce cysteine residues at positions 69, 130, and 186. Each mutant was fully and rapidly reactive with several sulfhydryl-specific reagents, indicating superficial location. Coupling of SH-groups with fluorescein-maleimide or biotin-maleimide was tolerated without loss of hemolytic activity at position 130, and the formed hexamers were visible on target cells by fluorescence microscopy and could be detected on…

MutagenesisBiological activityCell BiologyBiochemistrychemistry.chemical_compoundBiotinchemistryBiochemistryFluorescence microscopeSite-directed mutagenesisMolecular BiologyElectroblottingStaphylococcus aureus alpha toxinCysteineJournal of Biological Chemistry
researchProduct