Search results for "Discontinuities"
showing 10 items of 77 documents
CAD of complex passive devices composed of arbitrarily shaped waveguides using Nyström and BI-RME methods
2004
In this paper, a novel computer-aided design (CAD) tool of complex passive microwave devices in waveguide technology is proposed. Such a tool is based on a very efficient integral-equation analysis technique that provides a full-wave characterization of discontinuities between arbitrarily shaped waveguides defined by linear, circular, and/or elliptical arcs. For solving the modal analysis of such arbitrary waveguides, a modified version of the well-known boundary integral-resonant-mode expansion (BI-RME) method using the Nyström approach, instead of the traditional Galerkin version of the method of moments, is proposed, thus providing significant savings on computational costs and implement…
A rigorous and efficient full-wave analysis of uniform bends in rectangular waveguide under arbitrary incidence
2003
In this paper, a rigorous full-wave analysis of uniform bends in rectangular waveguides is performed. An accurate and efficient method-of-moments solution combined with the generalized-admittance-matrix (GAM) formulation is proposed in order to achieve a full-wave characterization of the analyzed structures. This full-wave modal solution turns out to be necessary for modeling complex microwave devices involving an arbitrary number of discontinuities between curved and straight waveguides, where all the modes of the involved guides are excited. The key feature of the presented method lies in the GAM representation of single and cascaded curved E- and H-plane uniform bends, which allows the c…
Characterizing cavity-like spaces in active-site models of zeolites
2003
A method for the calculation of fractal surfaces of crystals is presented. The fractal dimension of fragments of zeolites is computed. Results compare well with reference calculations performed with program GEPOL. The active site of Bronsted acid zeolites is modelled by sets of Al–OH–Si units. These units form 2–12-membered rings. Topological indices for the different active-site models are computed. The comparison of calculations performed with programs GEPOL and SURMO2 allows computing the model indices. The cavity-like globularity and rugosity show sharp discontinuities for the ring with 6 units. Most cavity-like spaces show no fractal character. However, the 6–8-ring cavity-like spaces …
3D structural modeling and restoration of the Apennine-Maghrebian chain in Sicily: Application for non-cylindrical fold-and-thrust belts
2019
International audience; Thirteen seismic reflection profiles and field observations have been used to build a three-dimensional watertight geological model of the sub-surface architecture of the Trapanese carbonate platform unit of the Apennine-Maghrebian chain in the Mt. Kumeta and Mt. Rocca Busambra (NW Sicily, Italy). Either a single step or a two-step thrust-fault deformation model is acceptable on the basis of seismic interpretation but the integration of 3D model reconstruction and 3D geomechanical restoration, validates only the scenario with a single stage of deformation.The 3D model highlights along strike variations of the structural style for the Trapanese unit where pre-existing…
On the history of torsional stress concentrations in shafts: From electrical analogies to numerical methods
2014
This article proposes a retrospective on experimental and numerical methods developed throughout the past century to solve the torsion problem in shafts, with particular emphasis on the determination of shear stress concentration factors in discontinuities of typical use in shaft design. This article, in particular, presents the theory and related solutions distinguishing between two classes of geometries: shafts with constant cross section and axisymmetric shafts with variable diameter. Emphasis is given to approaches based on physical analog methods and, in particular, those based on electrical analogies proposed since about 1925. Experimental methods based on structural physical models …
Cell-average WENO with progressive order of accuracy close to discontinuities with applications to signal processing
2020
In this paper we translate to the cell-average setting the algorithm for the point-value discretization presented in S. Amat, J. Ruiz, C.-W. Shu, D. F. Y\'a\~nez, A new WENO-2r algorithm with progressive order of accuracy close to discontinuities, submitted to SIAM J. Numer. Anal.. This new strategy tries to improve the results of WENO-($2r-1$) algorithm close to the singularities, resulting in an optimal order of accuracy at these zones. The main idea is to modify the optimal weights so that they have a nonlinear expression that depends on the position of the discontinuities. In this paper we study the application of the new algorithm to signal processing using Harten's multiresolution. Se…
Rise and fall of historic tram networks: Logistic approximation and discontinuous events
2019
Abstract A logistic approximation was used to describe, in terms of total length (L) and population (H) variables, the growth and decay of historic transportation systems. Three successive stages, separated for sharp discontinuities were detected for several European tramway and metro systems, corresponding to a fast initial growth followed by an intermediate step of slow growth and a final stage of rapid decay. A common, generalized behaviour was obtained in the L/H vs. H variations relative to critical values of L and H parameters defined from the maximum in the L/H ratio.
Efficient Analysis of Arbitrarily Shaped Inductive Obstacles in Rectangular Waveguides Using a Surface Integral Equation Formulation
2007
In this paper we propose to use the Surface Integral Equation technique for the analysis of arbitrarily shaped Hplane obstacles in rectangular waveguides, which can contain both metallic and/or dielectric objects. The Green functions are formulated using both spectral and spatial images series, whose convergence behavior has been improved through several acceleration techniques. Proceeding in this way, the convergence of the series is not attached to the employment of any particular basis or test function, thus consequently increasing the flexibility of the implemented technique. In order to test the accuracy and numerical efficiency of the proposed method, results for practical microwave c…
Determination of the object surface function by structured light: application to the study of spinal deformities.
1999
The projection of structured light is a technique frequently used to determine the surface shape of an object. In this paper, a new procedure is described that efficiently resolves the correspondence between the knots of the projected grid and those obtained on the object when the projection is made. The method is based on the use of three images of the projected grid. In two of them the grid is projected over a flat surface placed, respectively, before and behind the object; both images are used for calibration. In the third image the grid is projected over the object. It is not reliant on accurate determination of the camera and projector pair relative to the grid and object. Once the met…
Aiding phase unwrapping by increasing the number of residues in two-dimensional wrapped-phase distributions.
2015
In phase unwrapping residues are points of locally inconsistent phase that occur within a wrapped-phase map, which are usually regarded as being problematic for phase-unwrapping algorithms. Real phase maps typically contain a number of residues that are approximately proportional to the subsequent difficulty in unwrapping the phase distribution. This paper suggests the radical use of the discrete Fourier transform to actually increase the number of residues in 2D phase-wrapped images that contain discontinuities. Many of the additional residues that are artificially generated by this method are located on these discontinuities. For example, in fringe projection systems, such phase discontin…