Search results for "Disks"

showing 10 items of 118 documents

Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.

2015

Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…

0301 basic medicineDendritic spineVesicular Inhibitory Amino Acid Transport Proteinsdrug effects [Synapses]Tropomyosin receptor kinase BHippocampal formationgenetics [Carrier Proteins]pharmacology [Brain-Derived Neurotrophic Factor]Hippocampusmetabolism [Vesicular Inhibitory Amino Acid Transport Proteins]Mtap2 protein ratMice0302 clinical medicineNeurotrophic factorsdrug effects [Synaptic Vesicles]genetics [Nerve Tissue Proteins]Cells Culturedultrastructure [Neurons]NeuronsChemistryLong-term potentiationSynaptic Potentialsphysiology [Neurons]physiology [Dendritic Spines]Cell biologyultrastructure [Dendritic Spines]metabolism [Receptor trkB]Synaptic VesiclesFilopodiaultrastructure [Synaptosomes]Disks Large Homolog 4 ProteinMicrotubule-Associated ProteinsCognitive NeuroscienceDendritic Spinesmetabolism [Disks Large Homolog 4 Protein]Nerve Tissue Proteinsgenetics [Receptor trkB]03 medical and health sciencesCellular and Molecular NeuroscienceOrgan Culture Techniquesphysiology [Synaptic Vesicles]metabolism [Vesicular Glutamate Transport Protein 1]TrkB protein ratdrug effects [Synaptic Potentials]Synaptic vesicle recyclingAnimalsHumansReceptor trkBddc:610metabolism [Synaptosomes]metabolism [Nerve Tissue Proteins]Viaat protein ratBrain-Derived Neurotrophic Factormetabolism [Microtubule-Associated Proteins]Rats030104 developmental biologygenetics [Synaptic Potentials]nervous systemcytology [Hippocampus]Synaptic plasticityultrastructure [Synapses]SynapsesVesicular Glutamate Transport Protein 1CPNE6 protein ratphysiology [Synapses]Carrier Proteins030217 neurology & neurosurgerymetabolism [Carrier Proteins]SynaptosomesCerebral cortex (New York, N.Y. : 1991)
researchProduct

GSC 07396-00759 = V4046 Sgr C[D]: A Wide-separation Companion to the Close T Tauri Binary System V4046 Sgr AB

2011

We explore the possibility that GSC 07396-00759 (spectral type M1e) is a widely separated (~2.82', or projected separation ~12,350 AU) companion to the "old" (age ~12 Myr) classical T Tauri binary system V4046 Sgr AB, as suggested by the proximity and similar space motions of the two systems. If the two systems are equidistant and coeval, then GSC 07396--00759, like V4046 Sgr AB, must be a spectroscopic binary with nearly equal-mass components, and V4046 Sgr must be at least ~8 Myr old. Analysis of a serendipitous Chandra X-ray gratings spectrum and light curve as well as XMM-Newton light curves and CCD spectra of GSC 07396-00759 obtained during long exposures targeting V4046 Sgr AB reveals…

Physics010308 nuclear & particles physicsBinary numberFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsLight curve01 natural sciencesSpectral lineT Tauri starSettore FIS/05 - Astronomia E Astrofisicabinaries: close circumstellar matter protoplanetary disks stars: pre-main sequenceAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciencesBinary systemCircular orbitCircumbinary planet010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Broadband spectral analysis of MXB 1659-298 in its soft and hard state

2019

The X-ray transient eclipsing source MXB 1659-298 went in outburst in 1999 and 2015, respectively, during which it was observed by XMM-Newton, NuSTAR and Swift. Using these observations we studied the broadband spectrum of the source to constrain the continuum components and to verify the presence of a reflection component. We analysed the soft and hard state of the source, finding that the soft state can be modelled with a thermal component associated with the inner accretion disc plus a Comptonised component. A smeared reflection component and the presence of an ionised absorber are also requested in the best-fit model. On the other hand, the direct continuum emission in the hard state ca…

High Energy Astrophysical Phenomena (astro-ph.HE)X-rays: binariesstars: individual (MXB 1659-298)stars: neutronaccretionaccretion disksAstrophysics::High Energy Astrophysical PhenomenaAccretion Accretion disks Stars: individual (MXB 1659-298) Stars: neutron X-rays: binariesFOS: Physical sciences[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution

2020

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Open Access funding provided by Max Planck Society.--All authors: Kim, Jae-Young; Krichbaum, Thomas P.; Broderick, Avery E.; Wielgus, Maciek; Blackburn, Lindy; Gómez, José L.; Johnson, Michael D.; Bouman, Katherine L.; Chael, Andrew; Akiyama, Kazunori; Jorstad, Svetlana; Marscher, Alan P.; Issaoun, Sara; Janssen, Michael; Chan, Chi-kwan; Savolainen, Tuomas; Pesce, Dominic W.; Özel, Feryal; Alberdi, Antxon; Alef, Walt…

ACTIVE GALACTIC NUCLEIBrightnessActive galactic nucleusactive [Galaxies]Astrophysics::High Energy Astrophysical PhenomenaAstronomygalaxies: activeAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSubmillimeter ArrayFLOWSSCALE CIRCULAR-POLARIZATION0103 physical sciencesVery-long-baseline interferometryBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsEvent Horizon Telescope[PHYS]Physics [physics]Jet (fluid)010308 nuclear & particles physicsAstronomy and AstrophysicsFLAREgalaxies: jetsindividual: 3C 279 [Galaxies]LONGVARIABILITYgalaxies: individual: 3C 279GAMMA-RAYQUASARS13. Climate actionSpace and Planetary Sciencetechniques: interferometricBrightness temperatureACCRETION DISKSinterferometric [Techniques]jets [Galaxies]RELATIVISTIC JETS[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & astrophysics
researchProduct

Revealing the structure of the lensed quasar Q 0957+561. I. Accretion disk size

2021

We thank the anonymous referee for the helpful comments, and constructive remarks on this manuscript. We thank the GLENDAMA project for making publicly available the monitoring data of Q 0957+561. C.F. gratefully acknowledges the financial support from Tel Aviv University and University of Haifa through a DFG grant HA3555-14/1. E.M. and J.A.M are supported by the Spanish MINECO with the grants AYA2016- 79104-C3-1-P and AYA2016-79104-C3-3-P. J.A.M. is also supported from the Generalitat Valenciana project of excellence Prometeo/2020/085. J.J.V. is supported by the project AYA2017-84897-P financed by the Spanish Ministerio de Economia y Competividad and by the Fondo Europeo de Desarrollo Regi…

Brightnessmagnificationtime-delayFOS: Physical sciencesAstrophysicsgravitational lensing: microAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensingvlbi observationsmicro [Gravitational lensing]accretionpeculiar velocityindividual: Q 0957+561 [Quasars]Astrophysics::Galaxy AstrophysicsPhysicsquasars: individual: q 0957+561robust determinationaccretion disksvelocity dispersionq0957+561Astronomy and AstrophysicsQuasarAccretion accretion disksLight curveAstrophysics - Astrophysics of GalaxiesGalaxyAccretion (astrophysics)StarsGravitational lensdark-matterx-raySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary Astrophysicsoptical continuum emission
researchProduct

Discovery of 105 Hz coherent pulsations in the ultracompact binary IGR J16597-3704

2018

We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597-3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsations show a clear Doppler modulation implying an orbital period of ~46 minutes and a projected semi-major axis of ~5 lt-ms, which makes IGR J16597-3704 an ultra-compact X-ray binary system. We estimated a minimum companion mass of 0.0065 solar masses, assuming a neutron star mass of 1.4 solar masses, and an inclination angle of <75 degrees (suggested by the absence of eclipses or dips in its light-curve). The broad-band energy spectrum of the…

PhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesakeAccretion accretion diskSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBinaries: generalAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsgeneral; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Binaries]Astronomy and AstrophysicsAstronomy and AstrophysicLight curveOrbital periodX-rays: binarieStars: neutronNeutron starSpace and Planetary ScienceGlobular clustersymbolsElectron temperatureAstrophysics - High Energy Astrophysical PhenomenaDoppler effect
researchProduct

XMM-Newton detects a relativistically broadened iron line in the spectrum of the ms X-ray pulsar SAX J1808.4-3658

2008

We report on a 63-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst which started on September 21st 2008. The pn spectrum shows a highly significant emission line in the energy band where the iron K-alpha line is expected, and which we identify as emission from neutral (or mildly ionized) iron. The line profile appears to be quite broad (more than 1 keV FWHM) and asymmetric; the most probable explanation for this profile is Doppler and relativistic broadening from the inner accretion disc. From a fit with a diskline profile we find an inner radius of the disc of 8.7^(+3.7)_(-2.7) R_g, corresponding to 18.0^(+7.6)_(-5.6) km f…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)accretion accretion disks line: profiles stars: pulsars: individual: SAX J1808.4-3658 relativity X-rays: binariesFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicssymbols.namesakeNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarIonizationsymbolsAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics::Earth and Planetary AstrophysicsDoppler effectAstrophysics::Galaxy AstrophysicsX-ray pulsarLine (formation)
researchProduct

Reflection component in the Bright Atoll Source GX 9+9

2020

GX 9+9 (4U 1728-16) is a low mass X-ray binary (LMXB) source harboring a neutron star. Although it belongs to the subclass of the bright Atoll sources together with GX 9+1, GX 3+1, and GX 13+1, its broadband spectrum is poorly studied and apparently does not show reflection features in the spectrum. To constrain the continuum well and verify whether a relativistic smeared reflection component is present, we analyze the broadband spectrum of GX 9+9 using {\it BeppoSAX} and \textit{XMM-Newton} spectra covering the 0.3-40 keV energy band. We fit the spectrum adopting a model composed of a disk-blackbody plus a Comptonized component whose seed photons have a blackbody spectrum (Eastern Model). …

PhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsColor temperature010502 geochemistry & geophysics01 natural sciencesSpectral lineX-rays: binariesstars: neutronAccretion accretion diskSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesBlack-body radiation010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion disksAstronomy and AstrophysicsX-rays: binarieAccretion (astrophysics)Neutron starSpace and Planetary ScienceElectron temperatureAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]stars: individual: GX 9+9
researchProduct

X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-beta values

2009

AIMS. We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of beta >= 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. METHODS. We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere, by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). RESULTS. The dynamics and stability of the accretion shock strongly depends on the plasma beta. In the case of shocks with…

Radiative coolingAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesX-rays: starsAstrophysicsstars: pre-main sequenceInstabilitymagnetohydrodynamics (MHD)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::Solar and Stellar AstrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion accretion disksStellar magnetic fieldStellar atmosphereAstronomy and Astrophysicsshock wavesAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Observatory science with eXTP

2019

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

cataclysmic binariesAstronomyFIELD CAMERAS OBSERVATIONSspace research instruments nuclear astrophysics flare stars accretion and accretion disks mass loss and stellar winds cataclysmic binaries X-ray binaries supernova remnants active galactic nuclei X-ray bursts gamma-ray bursts gravitational wavesGeneral Physics and Astronomygamma-ray burstspace research instrument01 natural sciencesGamma ray burstsObservatoryAccretion and accretion disksAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgravitational waveaccretion and accretion diskPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)supernova remnants[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]flare starsgamma-ray burstsAstrophysics::Instrumentation and Methods for Astrophysicsaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray bursts; Physics and Astronomy (all)Space research instrumentsX ray burstSupernovaX-ray binariesgravitational wavesaccretion and accretion disksQUIETHigh massX-ray binarieMass loss and stellar windsNuclear astrophysicsGamma-ray burstsspace research instrumentsAstrophysics - High Energy Astrophysical PhenomenaPULSAR-WIND NEBULAEFAST RADIO-BURSTSAstrofísica nuclearActive galactic nucleusTIDAL DISRUPTIONSupernova remnantsAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysicsPolarimetryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsACCRETING NEUTRON-STARSaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray burstsGravitational wavesPhysics and Astronomy (all)cataclysmic binarieSettore FIS/05 - Astronomia e AstrofisicaSUPERMASSIVE BLACK-HOLES0103 physical sciences010306 general physicsX-ray burstAstrophysics::Galaxy AstrophysicsCataclysmic binariesActive galactic nucleiflare starAstronomyWhite dwarfFlare starsStarssupernova remnantQB460-466 Astrophysics[SDU]Sciences of the Universe [physics]mass loss and stellar wind:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]active galactic nucleiX-RAYX-ray burstsSupernova remmantsmass loss and stellar windsX ray binaries[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SEYFERT 1 GALAXYnuclear astrophysic
researchProduct