Search results for "Disordered system"
showing 10 items of 244 documents
High-temperature series analysis of the p-state Potts glass model on d-dimensional hypercubic lattices
1999
We analyze recently extended high-temperature series expansions for the “Edwards-Anderson” spin-glass susceptibility of the p-state Potts glass model on d-dimensional hypercubic lattices for the case of a symmetric bimodal distribution of ferro- and antiferromagnetic nearest-neighbor couplings \(\). In these star-graph expansions up to order 22 in the inverse temperature \(\), the number of Potts states p and the dimension d are kept as free parameters which can take any value. By applying several series analysis techniques to the new series expansions, this enabled us to determine the critical coupling Kc and the critical exponent \(\) of the spin-glass susceptibility in a large region of …
Transient Reversible Growth and Percolation During Phase Separation
1988
Binary mixtures when quenched into the two-phase region exhibit transient percolation phenomena. These transient percolation phenomena and the underlying mechanism of transient reversible growth are investigated. In particular, one of the possible dynamical percolation lines between the dynamical spinodal and the line of macroscopic percolation is traced out. Analyzing the finite size effects with the usual scaling theory one finds exponents which seem to be inconsistent with the universality class of percolation. However, at zero temperature, where the growth is non-reversible and the transition of a sol-gel type, the exponents are consistent with those of random percolation.
How Does the Relaxation of a Supercooled Liquid Depend on Its Microscopic Dynamics?
1998
Using molecular dynamics computer simulations we investigate how the relaxation dynamics of a simple supercooled liquid with Newtonian dynamics differs from the one with a stochastic dynamics. We find that, apart from the early beta-relaxation regime, the two dynamics give rise to the same relaxation behavior. The increase of the relaxation times of the system upon cooling, the details of the alpha-relaxation, as well as the wave vector dependence of the Edwards-Anderson-parameters are independent of the microscopic dynamics.
The structural relaxation of molten sodium disilicate
2002
We use molecular dynamics computer simulations to study the relaxation dynamics of Na2O-2(SiO2) in its molten, highly viscous state. We find that at low temperatures the incoherent intermediate scattering function for Na relaxes about 100 times faster than the one of the Si and O atoms. In contrast to this all coherent functions relax on the same time scale if the wave-vector is around 1AA^-1. This anomalous relaxation dynamics is traced back to the channel-like structure for the Na atoms that have been found for this system. We find that the relaxation dynamics for Si and O as well as the time dependence of the coherent functions for Na can be rationalized well by means of mode-coupling th…
Low-energy fixed points of random Heisenberg models
2002
The effect of quenched disorder on the low-energy and low-temperature properties of various two- and three-dimensional Heisenberg models is studied by a numerical strong disorder renormalization group method. For strong enough disorder we have identified two relevant fixed points, in which the gap exponent, omega, describing the low-energy tail of the gap distribution, P(Delta) ~ Delta^omega is independent of disorder, the strength of couplings and the value of the spin. The dynamical behavior of non-frustrated random antiferromagnetic models is controlled by a singlet-like fixed point, whereas for frustrated models the fixed point corresponds to a large spin formation and the gap exponent …
Test of mode coupling theory for a supercooled liquid of diatomic molecules. II.q-dependent orientational correlators
1997
Using molecular dynamics computer simulations we study the dynamics of a molecular liquid by means of a general class of time-dependent correlators S_{ll'}^m(q,t) which explicitly involve translational (TDOF) and orientational degrees of freedom (ODOF). The system is composed of rigid, linear molecules with Lennard- Jones interactions. The q-dependence of the static correlators S_{ll'}^m(q) strongly depend on l, l' and m. The time dependent correlators are calculated for l=l'. A thorough test of the predictions of mode coupling theory (MCT) is performed for S_{ll}^m(q,t) and its self part S_{ll}^{(s)m}(q,t), for l=1,..,6. We find a clear signature for the existence of a single temperature T…
The McCoy-Wu model in the mean-field approximation
1998
We consider a system with randomly layered ferromagnetic bonds (McCoy-Wu model) and study its critical properties in the frame of mean-field theory. In the low-temperature phase there is an average spontaneous magnetization in the system, which vanishes as a power law at the critical point with the critical exponents $\beta \approx 3.6$ and $\beta_1 \approx 4.1$ in the bulk and at the surface of the system, respectively. The singularity of the specific heat is characterized by an exponent $\alpha \approx -3.1$. The samples reduced critical temperature $t_c=T_c^{av}-T_c$ has a power law distribution $P(t_c) \sim t_c^{\omega}$ and we show that the difference between the values of the critical…
Inherent structure entropy of supercooled liquids
1999
We present a quantitative description of the thermodynamics in a supercooled binary Lennard Jones liquid via the evaluation of the degeneracy of the inherent structures, i.e. of the number of potential energy basins in configuration space. We find that for supercooled states, the contribution of the inherent structures to the free energy of the liquid almost completely decouples from the vibrational contribution. An important byproduct of the presented analysis is the determination of the Kauzmann temperature for the studied system. The resulting quantitative picture of the thermodynamics of the inherent structures offers new suggestions for the description of equilibrium and out-of-equilib…
Higher-order correlation functions and nonlinear response functions in a gaussian trap model.
2012
The four-time correlation function of a general dynamical variable obeying Gaussian statistics is calculated for the trap model with a Gaussian density of states. It is argued that for energy-independent variables this function is reminiscent of the four-time functions that have been discussed earlier in the interpretation of the results of four-dimensional NMR experiments on supercooled liquids. Using an approximative relation between the four-time correlation function and the cubic response function the nonlinear susceptibility is calculated and the results are compared with the corresponding ones resulting from an exact calculation. It is found that the results of the approximation chang…
Dynamical Heterogeneities Below the Glass Transition
2001
We present molecular dynamics simulations of a binary Lennard-Jones mixture at temperatures below the kinetic glass transition. The ``mobility'' of a particle is characterized by the amplitude of its fluctuation around its average position. The 5% particles with the largest/smallest mean amplitude are thus defined as the relatively most mobile/immobile particles. We investigate for these 5% particles their spatial distribution and find them to be distributed very heterogeneously in that mobile as well as immobile particles form clusters. The reason for this dynamic heterogeneity is traced back to the fact that mobile/immobile particles are surrounded by fewer/more neighbors which form an ef…