Search results for "Doping"

showing 10 items of 801 documents

Characterization of Dielectric Anomaly in Solid Solution Based on BaTiO3

2011

The influence of Zr doping on a structure and dielectric properties of Ba0.8Sr0.2TiO3 were studied. For this purpose Ba0.8Sr0.2Ti0.75Zr0.25O3 ceramics were obtained by a conventional method and were determined by an X-ray diffraction (XRD) and scanning electron microscopy (SEM) for crystallographic, surface morphological and compositional studies. The temperature and frequency dependence of dielectric permittivity were studied in the temperature range from 150 to 500 K and the frequency between 20 Hz and 1000000 Hz. The thermal behavior of the Ba0.8Sr0.2Ti0.75Zr0.25O3 ceramics were also studied using Differential Scanning Calorimetry. A diffusivity coefficient γ was calculated.

DiffractionMaterials scienceScanning electron microscopeDopingAnalytical chemistryDielectricAtmospheric temperature rangeCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsDifferential scanning calorimetryvisual_artvisual_art.visual_art_mediumCeramicSolid solutionFerroelectrics
researchProduct

Giant conductivity enhancement: Pressure-induced semiconductor-metal phase transition in Cd0.90Zn0.1Te

2019

Element doping and pressure compression may change material properties for improved performance in applications. We report pressure-induced metallization in the semiconductor $\mathrm{C}{\mathrm{d}}_{0.90}\mathrm{Z}{\mathrm{n}}_{0.1}\mathrm{Te}$. Transport measurements showed an overall resistivity drop of 11 orders of magnitude under compression up to 12 GPa, which is indicative of a metallization transition. X-ray diffraction measurements revealed that the sample underwent a structural transition from a cubic-$F4\overline{3}m$ phase (zinc blende) to a cubic-$Fm\overline{3}m$ phase (rock salt) at about 5.5 GPa, followed by another transition to an orthorhombic $Cmcm$ structure at 13 GPa. A…

DiffractionPhase transitionMaterials scienceCondensed matter physicsDoping02 engineering and technologyConductivity021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials Sciencesymbols.namesakeElectrical resistivity and conductivity0103 physical sciencessymbolsOrthorhombic crystal system010306 general physics0210 nano-technologyElectronic band structureRaman spectroscopyPhysical Review B
researchProduct

Pressure-restored superconductivity in Cu-substituted FeSe

2011

Copper doping of FeSe destroys its superconductivity at ambient pressure, even at low doping levels. Here we report the pressure-dependent transport and structural properties of Fe${}_{1.01\ensuremath{-}x}$Cu${}_{x}$Se with 3$%$ and 4$%$ Cu doping and find that the superconductivity is restored. Metallic resistivity behavior, absent in Cu-doped FeSe, is also restored. At the low pressure of 1.5 GPa, superconductivity is seen at 6 K for 4$%$ Cu doping, somewhat lower than the 8 K ${T}_{c}$ of undoped FeSe. ${T}_{c}$ reaches its maximum of 31.3 K at 7.8 GPa, lower than the maximum superconducting temperature in the undoped material under pressure (${T}_{c}$ max of 37 K) but still very high. X…

DiffractionSuperconductivityMaterials scienceCondensed matter physicsDopingCondensed Matter PhysicsCopper dopingElectronic Optical and Magnetic MaterialsMetalLattice constantElectrical resistivity and conductivityvisual_artvisual_art.visual_art_mediumAmbient pressurePhysical Review B
researchProduct

Phase separation as a key to a thermoelectric high efficiency

2012

This work elucidates the possible reasons for the outstanding, but never reproduced thermoelectric properties of the doped Ti(0.5)Zr(0.25)Hf(0.25)NiSn Heusler compounds. The structural investigations done via synchrotron X-ray diffraction measurements and scanning electron microscope measurements, which clearly show that the microstructure consists of three temperature stable C1(b) phases with possible semi-coherent interfaces, are presented. The exceptional thermoelectric properties are due to this intrinsic phase separation. It is possible to reproduce the high Figure of Merit values with ZT = 1.2 at 830 K. Furthermore, the influence of doping different elements on the Sn position in this…

DiffractionWork (thermodynamics)Materials scienceCondensed matter physicsScanning electron microscopeDopingGeneral Physics and AstronomyMicrostructureSynchrotronlaw.inventionCrystallographylawThermoelectric effectFigure of meritPhysical and Theoretical ChemistryPhys. Chem. Chem. Phys.
researchProduct

Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping

2004

Abstract The vacuum-ultraviolet fundamental absorption edge (‘Urbach edge’) of four types of synthetic silica glasses, ‘wet’, ‘dry’, and doped by 570 and 6010 ppm wt. fluorine, was studied in the absorption coefficient range (1 cm−1–500 cm−1) at room temperature. The absorption edge has exponential form in agreement with the Urbach’s rule. The well-documented increase of vacuum-ultraviolet transparency upon fluorine doping is due to a steeper absorption edge (shorter ‘Urbach tail’) as compared to undoped silicas. The increase of the edge slope in F-doped silica occurs already the lower dopant concentration (570 ppm), the slope does not increase further in the 6010 ppm doped glass. These fin…

DopantAbsorption spectroscopyChemistryDopingAnalytical chemistrychemistry.chemical_elementEdge (geometry)Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsAbsorption edgeChemical bondAttenuation coefficientMaterials ChemistryCeramics and CompositesFluorineJournal of Non-Crystalline Solids
researchProduct

Time‐resolved absorption and luminescence following electron‐hole pair creation in ZnO

2008

We report transient absorption induced by electron-hole excitation in undoped ZnO. A laser pump/continuum probe method covers 2–300 ps, and an electron pulse with lamp transmission covers 8–300 ns. The broad absorption spectrum increases monotonically with wavelength from 900 to 1600 nm. Following a reasonable hypothesis that the free-carrier-like induced infrared absorption is proportional to the total number of free carriers, excitons, and shallow-trapped carriers in the sample, these data allow setting an upper limit on the quantum efficiency of a specified lifetime component of luminescence. For the undoped commercial ZnO studied in this report, the quantum efficiency of room temperatur…

DopantAbsorption spectroscopyCondensed Matter::OtherChemistrybusiness.industryExcitonDopingElectron holeCondensed Matter PhysicsCondensed Matter::Materials ScienceUltrafast laser spectroscopyOptoelectronicsQuantum efficiencyLuminescencebusinessphysica status solidi c
researchProduct

Dopant Clusterization and Oxygen Coordination in Ta-Doped Bismuth Oxide: A Structural and Computational Insight into the Mechanism of Anion Conduction

2015

Bi2O3 in its fluorite-like form can be obtained either at 730-824 °C, showing the highest oxide-ion conduction known so far, or by doping. We present a comprehensive appraisal of the local atomic structure of Ta-doped Bi2O3 investigating by X-ray absorption spectroscopy the aggregation motifs of Ta5+ and the interaction between dopants and oxygen vacancies. Using periodic density functional theory simulations, we show that the connection of Ta4O18 aggregates is energetically favorable. We find that the local coordination of Bi3+ and its electronic structure, as seen from the calculated density of states (DOS), are invariably determined by the Bi 6s2 lone pair in both doped and undoped Bi2O3…

DopantAbsorption spectroscopyElectronic Optical and Magnetic MaterialDopingOxidechemistry.chemical_elementSurfaces Coatings and FilmElectronic structureSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBismuthchemistry.chemical_compoundGeneral EnergyEnergy (all)chemistryComputational chemistryChemical physicsDensity of statesPhysical and Theoretical ChemistryLone pair
researchProduct

Influence of a nano phase segregation on the thermoelectric properties of the p-type doped stannite compound Cu(2+x)Zn(1-x)GeSe4.

2012

Engineering nanostructure in bulk thermoelectric materials has recently been established as an effective approach to scatter phonons, reducing the phonon mean free path, without simultaneously decreasing the electron mean free path for an improvement of the performance of thermoelectric materials. Herein the synthesis, phase stability, and thermoelectric properties of the solid solutions Cu_(2+x)Zn_(1–x)GeSe_4 (x = 0–0.1) are reported. The substitution of Zn^(2+) with Cu^+ introduces holes as charge carriers in the system and results in an enhancement of the thermoelectric efficiency. Nano-sized impurities formed via phase segregation at higher dopant contents have been identified and are l…

DopantCondensed matter physicsPhonon scatteringChemistryDopingGeneral ChemistryThermoelectric materialsBiochemistryCatalysisColloid and Surface ChemistryImpurityThermoelectric effectGrain boundaryCharge carrierJournal of the American Chemical Society
researchProduct

Hydration entropy of BaZrO3 from first principles phonon calculations

2015

The impact of phonons on the hydration and defect thermodynamics of undoped and acceptor (Sc, In, Y and Gd) doped BaZrO3 is addressed by means of first principles supercell calculations. In contrast to previous, similar investigations, we evaluate contributions from all phonon modes, and also pressure/volume effects on the phonon properties. The calculations are performed at the GGA-level with the PBE and RPBE functionals, both of which predict for BaZrO3 a stable cubic perovskite structure. For all dopants, the vibrational formation entropy of the doubly positively charged oxygen vacancy is significantly lower than that of the protonic defect , which therefore also is the dominant contribu…

DopantCondensed matter physicsRenewable Energy Sustainability and the EnvironmentChemistryPhononDopingGeneral ChemistryAcceptorIonBrillouin zoneCondensed Matter::Materials ScienceEntropy (classical thermodynamics)Condensed Matter::SuperconductivityVacancy defectCondensed Matter::Strongly Correlated ElectronsGeneral Materials SciencePhysics::Chemical PhysicsJournal of Materials Chemistry A
researchProduct

Effects of Silver Doping on the Geometric and Electronic Structure and Optical Absorption Spectra of the Au_{25-n}Ag_{n}(SH)_{18}^{-} (n = 1, 2, 4, 6…

2012

The effect of silver doping of the Au25(SH)18– nanoparticle is studied by investigating Au25–nAgn(SH)18– (n = 1, 2, 4, 6, 8, 10, 12) systems using DFT. For n = 1, doping of the icosahedral shell of the metal core is energetically more favorable than doping of the metal–thiolate units or the center of the core. For n ≥ 2, only doping of the core surface is considered, and arrangements where the silver dopants are in close proximity tend to be slightly less favorable. However, energy differences are small, and all conformations are accessible under experimental conditions. Boltzmann-averaged excitation spectra for these systems show similar features to the undoped Au25(SH)18–. The main differ…

Dopantta114ChemistrySuperatomDopingElectronic structureSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsNanoclustersMetalCrystallographyGeneral EnergyAtomic orbitalvisual_artvisual_art.visual_art_mediumPhysical and Theoretical ChemistryBimetallic stripThe Journal of Physical Chemistry C
researchProduct