Search results for "Dose-Response Relationship"

showing 10 items of 1408 documents

Evaluation of dipeptide nitriles as inhibitors of rhodesain, a major cysteine protease of Trypanosoma brucei

2016

A series of dipeptide nitriles known as inhibitors of mammalian cathepsins were evaluated for inhibition of rhodesain, the cathepsin L-like protease of Trypanosoma brucei. Compound 35 consisting of a Leu residue fitting into the S2 pocket and a triarylic moiety consisting of thiophene, a 1,2,4-oxadiazole and a phenyl ring fitting into the S3 pocket, and compound 33 with a 3-bromo-Phe residue (S2) and a biphenyl fragment (S3) were found to inhibit rhodesain in the single-digit nanomolar range. The observed steep structure-activity relationship could be explained by covalent docking simulations. With their high selectivity indices (ca. 200) and the good antitrypanosomal activity (8μM) the com…

0301 basic medicineStereochemistrymedicine.medical_treatmentTrypanosoma brucei bruceiClinical BiochemistryAntitubercular AgentsPharmaceutical ScienceCysteine Proteinase InhibitorsTrypanosoma bruceiBiochemistryCysteine Proteinase InhibitorsStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundNitrilesDrug DiscoverymedicineStructure–activity relationshipMoietyMolecular BiologyProteaseDipeptideDose-Response Relationship DrugMolecular StructurebiologyChemistryOrganic ChemistryDipeptidesbiology.organism_classificationCysteine proteaseCysteine Endopeptidases030104 developmental biologyDocking (molecular)Molecular MedicineBioorganic & Medicinal Chemistry Letters
researchProduct

Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models

2018

Colorectal cancer (CRC) is a highly heterogeneous disease both from a molecular and clinical perspective. Several distinct molecular entities, such as microsatellite instability (MSI), have been defined that make up biologically distinct subgroups with their own clinical course. Recent data indicated that CRC can be best segregated into four groups called consensus molecular subtypes (CMS1-4), each of which has a unique biology and gene expression pattern. In order to develop improved, subtype-specific therapies and to gain insight into the molecular wiring and origin of these subtypes, reliable models are needed. This study was designed to determine the heterogeneity and identify the prese…

0301 basic medicineStromal cellColorectal cancerCellMice NudeAntineoplastic AgentsApoptosisComputational biologyBiologyModels BiologicalArticle03 medical and health sciencesMiceStructure-Activity Relationship0302 clinical medicineIn vivomedicineBiomarkers TumorTumor Cells CulturedAnimalsHumansMolecular BiologyCell ProliferationRegulation of gene expressionDose-Response Relationship DrugGene Expression ProfilingMesenchymal stem cellMicrosatellite instabilityCell DifferentiationNeoplasms ExperimentalCell Biologymedicine.diseaseGene expression profilingGene Expression Regulation NeoplasticOxaliplatin030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisFluorouracilDrug Screening Assays AntitumorColorectal NeoplasmsCell death and differentiation
researchProduct

2-methoxyestradiol impacts on amino acids-mediated metabolic reprogramming in osteosarcoma cells by interaction with NMDA receptor

2017

Deregulation of serine and glycine metabolism, have been identified to function as metabolic regulators in supporting tumor cell growth. The role of serine and glycine in regulation of cancer cell proliferation is complicated, dependent on concentrations of amino acids and tissue-specific. D-serine and glycine are coagonists of N-methyl-D-aspartate receptor subunit GRIN1. Importantly, NMDA receptors are widely expressed in cancer cells and play an important role in regulation of cell death, proliferation and metabolism of numerous malignancies. The aim of the present work was to associate the metabolism of glycine and D-serine with the anticancer activity of 2-methoxyestradiol. 2-methoxyest…

0301 basic medicineTime Factors2-methoxyestradiol neuronal nitric oxide synthase D-serine glycine osteosarcomaPhysiologyClinical BiochemistryNitric Oxide Synthase Type ISerine0302 clinical medicineCell MovementSerinechemistry.chemical_classificationMembrane Potential MitochondrialOsteosarcomaEstradiolTubulin ModulatorsAmino acidMolecular Docking Simulation030220 oncology & carcinogenesisMCF-7 CellsNMDA receptorOsteosarcomaFemalemedicine.drugProtein BindingSignal TransductionProgrammed cell deathGlycineAntineoplastic AgentsBone NeoplasmsBreast NeoplasmsNerve Tissue ProteinsBiologyMolecular Dynamics SimulationReceptors N-Methyl-D-Aspartate03 medical and health sciencesStructure-Activity RelationshipProtein DomainsmedicineHumans2-MethoxyestradiolCell ProliferationBinding SitesDose-Response Relationship DrugCell BiologyMetabolismmedicine.disease2-Methoxyestradiol030104 developmental biologychemistryCancer cellCancer researchEnergy Metabolism
researchProduct

Human Upcyte Hepatocytes: Characterization of the Hepatic Phenotype and Evaluation for Acute and Long-Term Hepatotoxicity Routine Testing

2016

The capacity of human hepatic cell-based models to predict hepatotoxicity depends on the functional performance of cells. The major limitations of human hepatocytes include the scarce availability and rapid loss of the hepatic phenotype. Hepatoma cells are readily available and easy to handle, but are metabolically poor compared with hepatocytes. Recently developed human upcyte hepatocytes offer the advantage of combining many features of primary hepatocytes with the unlimited availability of hepatoma cells. We analyzed the phenotype of upcyte hepatocytes comparatively with HepG2 cells and adult primary human hepatocytes to characterize their functional features as a differentiated hepatic …

0301 basic medicineTime FactorsPrimary Cell CultureTransfectionToxicologyRisk AssessmentTranscriptome03 medical and health sciences0302 clinical medicineMetabolomicsCytochrome P-450 Enzyme SystemIn vivoToxicity TestsmedicineHumansChildGlycogen synthaseDose-Response Relationship DrugbiologyInfant NewbornCytochrome P450Hep G2 CellsMiddle Agedmedicine.diseasePhenotypeHigh-Throughput Screening AssaysIsoenzymesOxidative StressPhenotype030104 developmental biologyGene Expression RegulationLiver030220 oncology & carcinogenesisHepatocytesbiology.proteinHepatic stellate cellCancer researchChemical and Drug Induced Liver InjurySteatosisTranscriptomeToxicological Sciences
researchProduct

Dibutyl Phthalate (DBP)-Induced Apoptosis and Neurotoxicity are Mediated via the Aryl Hydrocarbon Receptor (AhR) but not by Estrogen Receptor Alpha (…

2016

Dibutyl phthalate (di-n-butyl phthalate, DBP) is one of the most commonly used phthalate esters. DBP is widely used as a plasticizer in a variety of household industries and consumer products. Because phthalates are not chemically bound to products, they can easily leak out to enter the environment. DBP can pass through the placental and blood–brain barriers due to its chemical structure, but little is known about its mechanism of action in neuronal cells. This study demonstrated the toxic and apoptotic effects of DBP in mouse neocortical neurons in primary cultures. DBP stimulated caspase-3 and LDH activities as well as ROS formation in a concentration (10 nM–100 µM) and time-dependent (3–…

0301 basic medicineTime Factorsgenetic structuresPPARγPeroxisome proliferator-activated receptorApoptosis010501 environmental sciencesToxicology01 natural sciencesDBPMicechemistry.chemical_compoundERβReceptorCells CulturedERαCerebral CortexNeuronschemistry.chemical_classificationbiologyCaspase 3General NeurosciencePhthalateDibutyl PhthalatePhthalateOriginal ArticleSignal transductioncirculatory and respiratory physiologymedicine.medical_specialtyCell SurvivalDibutyl phthalateNeuroscience(all)03 medical and health sciencesInternal medicinemedicineAnimalsEstrogen Receptor betaRNA Messengercardiovascular diseasesEstrogen receptor beta0105 earth and related environmental sciencesDose-Response Relationship DrugAhREstrogen Receptor alphaNeuronAryl hydrocarbon receptorPPAR gamma030104 developmental biologyEndocrinologyReceptors Aryl Hydrocarbonchemistrybiology.proteinReactive Oxygen SpeciesEstrogen receptor alphaNeurotoxicity Research
researchProduct

Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

2016

In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective…

0301 basic medicineTime Factorslcsh:MedicineBiochemistryMass SpectrometryTreeschemistry.chemical_compoundAnimal CellsPlant ProductsMedicine and Health SciencesCaffeic acidApigeninlcsh:ScienceLuteolinChromatography High Pressure LiquidConnective Tissue CellsCultured Tumor CellsPrincipal Component AnalysisMultidisciplinaryAgricultureCell DifferentiationRipeningPlantsPhenylethyl AlcoholLipidsOsteoblast DifferentiationChemistryBiochemistryCell ProcessesConnective TissuePhysical SciencesApigeninBiological CulturesCellular TypesAnatomyResearch ArticleOlive TreesCoumaric AcidsResearch and Analysis MethodsVegetable Oils03 medical and health sciencesCaffeic AcidsPhenolsOleuropeinCell Line TumorOleaVanillic acidHumansPhenolsOlive OilCell ProliferationAnalysis of Variance030109 nutrition & dieteticsOsteoblastsDose-Response Relationship Druglcsh:RChemical CompoundsOrganismsBiology and Life SciencesCell BiologyCell CulturesOsteosarcoma CellsAgronomyOlive treesBiological Tissue030104 developmental biologychemistryFruitHydroxytyrosollcsh:QOilsCrop ScienceDevelopmental Biology
researchProduct

An in vitro investigation on the cytotoxic and nuclear receptor transcriptional activity of the mycotoxins fumonisin B1 and beauvericin.

2016

Fumonisin B1 (FB1) and beauvericin (BEA) are secondary metabolites of filamentous fungi, which under appropriate temperature and humidity conditions may develop on various foods and feeds. To date few studies have been performed to evaluate the toxicological and endocrine disrupting effects of FB1 and BEA. The present study makes use of various in vitro bioassays including; oestrogen, androgen, progestagen and glucocorticoid reporter gene assays (RGAs) for the study of nuclear receptor transcriptional activity, the thiazolyl blue tetrazolium bromide (MTT) assay to monitor cytotoxicity and high content analysis (HCA) for the detection of pre-lethal toxicity in the RGA and Caco-2 human colon …

0301 basic medicineTranscription GeneticCell SurvivalBiologyAdenocarcinomaEndocrine DisruptorsToxicologyFumonisins03 medical and health scienceschemistry.chemical_compound0404 agricultural biotechnologyGlucocorticoid receptorReceptors GlucocorticoidGenes ReporterDepsipeptidesmedicineHumansCytotoxicityReceptorCell NucleusFumonisin B1Dose-Response Relationship Drug04 agricultural and veterinary sciencesGeneral Medicine040401 food scienceBeauvericin030104 developmental biologychemistryNuclear receptorBiochemistryReceptors AndrogenToxicityColonic NeoplasmsCaco-2 CellsReceptors ProgesteroneGlucocorticoidmedicine.drugToxicology letters
researchProduct

Development of novel 1,4-benzodiazepine-based Michael acceptors as antitrypanosomal agents

2016

Novel 1,4-benzodiazepines, endowed with a Michael acceptor moiety, were designed taking advantage of a computational prediction of their pharmacokinetic parameters. Among all the synthesized derivatives, we identified a new lead compound (i.e., 4a), bearing a vinyl ketone warhead and endowed with a promising antitrypanosomal activity against Trypanosoma brucei brucei (IC50 = 5.29 µM), coupled with a lack of cytotoxicity towards mammalian cells (TC50>100 µM).

0301 basic medicineTrypanosomaKetonePeptidomimeticPeptidomimeticStereochemistryTrypanosoma brucei bruceiClinical BiochemistryPharmaceutical ScienceTrypanosoma brucei01 natural sciencesBiochemistryCell LineBenzodiazepinesMiceStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundparasitic diseasesDrug DiscoveryAnimalsStructure–activity relationshipMoietyCytotoxicityMolecular BiologyMicrowave irradiationchemistry.chemical_classificationDose-Response Relationship DrugMolecular Structurebiology010405 organic chemistryMacrophagesOrganic Chemistrybiology.organism_classificationMichael acceptors Microwave irradiation Peptidomimetics Pharmacokinetic parameters TrypanosomaTrypanocidal Agents0104 chemical sciencesPharmacokinetic parameter030104 developmental biologychemistryMichael reactionMolecular MedicineMichael acceptorLead compoundBioorganic & Medicinal Chemistry Letters
researchProduct

Vitamin K antagonism impairs the bone marrow microenvironment and hematopoiesis

2018

Abstract Vitamin K antagonists (VKAs) have been used in 1% of the world’s population for prophylaxis or treatment of thromboembolic events for 64 years. Impairment of osteoblast function and osteoporosis has been described in patients receiving VKAs. Given the involvement of cells of the bone marrow microenvironment (BMM), such as mesenchymal stem cells (MSCs) and macrophages, as well as other factors such as the extracellular matrix for the maintenance of normal hematopoietic stem cells (HSCs), we investigated a possible effect of VKAs on hematopoiesis via the BMM. Using various transplantation and in vitro assays, we show here that VKAs alter parameters of bone physiology and reduce funct…

0301 basic medicineVitamin KImmunologyPopulationBone Marrow CellsPeriostinBiochemistryMice03 medical and health sciences0302 clinical medicineLeukocytesAnimalsMedicineeducationeducation.field_of_studyDose-Response Relationship Drugbusiness.industryMacrophagesMonocyteMesenchymal stem cellAnticoagulantsCell BiologyHematologyHematopoietic Stem CellsHematopoiesisTransplantationHaematopoiesis030104 developmental biologymedicine.anatomical_structureCellular MicroenvironmentMyelodysplastic Syndromes030220 oncology & carcinogenesisCancer researchWarfarinBone marrowStem cellbusinessCell Adhesion MoleculesBiomarkersBlood
researchProduct

Effects of Pimozide Derivatives on pSTAT5 in K562 Cells

2017

STAT5 is a transcription factor, a member of the STAT family of signaling proteins. STAT5 is involved in many types of cancer, including chronic myelogenous leukemia (CML), in which this protein is found constitutively activated as a consequence of BCR-ABL expression. The neuroleptic drug pimozide was recently reported to act as an inhibitor of STAT5 phosphorylation and is capable of inducing apoptosis in CML cells in vitro. Our research group has synthesized simple derivatives of pimozide with cytotoxic activity and that are able to decrease the levels of phosphorylated STAT5. In this work we continued the search for novel STAT5 inhibitors, synthesizing compounds in which the benzoimidazol…

0301 basic medicineantiproliferationApoptosisPharmacologyBiochemistryAntineoplastic Agent0302 clinical medicinePimozidehemic and lymphatic diseasesDrug DiscoverySTAT5 Transcription FactorCytotoxic T cellPhosphorylationGeneral Pharmacology Toxicology and PharmaceuticsBCR-ABL-expressing leukemia; STAT5 inhibitors; antiproliferation; apoptosis; pimozideSTAT5Molecular StructurebiologyPimozidefood and beverages030220 oncology & carcinogenesisMolecular MedicinePhosphorylationHumanmedicine.drugAntineoplastic AgentsNOStructure-Activity Relationship03 medical and health sciencesK562 CellmedicineHumansTranscription factorCell ProliferationPharmacologyDose-Response Relationship DrugCell growthSTAT5 inhibitorsOrganic ChemistryApoptosiSTAT5 inhibitormedicine.disease030104 developmental biologyPharmacology Toxicology and Pharmaceutics (all)biology.proteinCancer researchBCR-ABL-expressing leukemiaDrug Screening Assays AntitumorK562 CellsK562 cellsChronic myelogenous leukemiaChemMedChem
researchProduct