Search results for "Down"

showing 10 items of 1658 documents

Hypocellularity in the murine model for Down Syndrome Ts65Dn is not affected by adult neurogenesis

2016

Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity …

0301 basic medicineanimal diseasesHippocampusSubventricular zoneBiotecnologiaHippocampusSubgranular zonelcsh:RC321-57103 medical and health sciences0302 clinical medicinedoublecortinNeuroplasticitymental disordersmedicineBrdUlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchbiologyGeneral NeuroscienceNeurogenesisOlfactory BulbOlfactory bulbDoublecortinCell biologyadult neurogenesisTs65Dn mice030104 developmental biologymedicine.anatomical_structureHypocellularityPsicobiologianervous systembiology.proteinDown SyndromeKi67Neuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Neuroscience
researchProduct

Novel Modulators of Proteostasis: RNAi Screen of Chromosome I in a Heat Stress Paradigm in C. elegans

2018

Proteostasis is of vital importance for cellular function and it is challenged upon exposure to acute or chronic insults during neurodegeneration and aging. The proteostasis network is relevant for the maintenance of proteome integrity and mainly comprises molecular chaperones and two degradation pathways, namely, autophagy and the ubiquitin proteasome system. This network is characterized by an impressive functional interrelation and complexity, and occasionally novel factors are discovered that modulate proteostasis. Here, we present an RNAi screen in C. elegans, which aimed to identify modulators of proteostasis in a heat stress paradigm. The screen comprised genes that are located on ch…

0301 basic medicineautophagyproteostasis networkUPSArticle03 medical and health sciences0302 clinical medicinemedicinechaperonelcsh:QH301-705.5GeneRNAi screenGene knockdownproteostasisbiologyAutophagyNeurodegenerationneurodegenerationGeneral Medicinemedicine.diseaseCell biology030104 developmental biologyProteostasislcsh:Biology (General)ProteasomeChaperone (protein)Proteomebiology.proteinC. elegans<i>C. elegans</i>; RNAi screen; proteostasis; proteostasis network; autophagy; UPS; chaperone; neurodegeneration030217 neurology & neurosurgeryCells
researchProduct

The soluble form of pan-RTK inhibitor and tumor suppressor LRIG1 mediates downregulation of AXL through direct protein–protein interaction in gliobla…

2019

Abstract Background Targeted approaches for inhibiting epidermal growth factor receptor (EGFR) and other receptor tyrosine kinases (RTKs) in glioblastoma (GBM) have led to therapeutic resistance and little clinical benefit, raising the need for the development of alternative strategies. Endogenous LRIG1 (Leucine-rich Repeats and ImmunoGlobulin-like domains protein 1) is an RTK inhibitory protein required for stem cell maintenance, and we previously demonstrated the soluble ectodomain of LRIG1 (sLRIG1) to potently inhibit GBM growth in vitro and in vivo. Methods Here, we generated a recombinant protein of the ectodomain of LRIG1 (sLRIG1) and determined its activity in various cellular GBM mo…

0301 basic medicinebiologyChemistryEGFRReceptor Protein-Tyrosine KinasesglioblastomaLRIG1AXLProximity ligation assayReceptor tyrosine kinase03 medical and health sciences030104 developmental biology0302 clinical medicineEctodomainDownregulation and upregulation030220 oncology & carcinogenesisBasic and Translational Investigationsbiology.proteinCancer researchreceptor tyrosine kinaseEpidermal growth factor receptorStem cellCell adhesionNeuro-oncology Advances
researchProduct

MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer

2017

// Giuseppina Roscigno 1, 2, * , Ilaria Puoti 1, 2, * , Immacolata Giordano 1 , Elvira Donnarumma 3 , Valentina Russo 1 , Alessandra Affinito 1 , Assunta Adamo 1 , Cristina Quintavalle 1, 2 , Matilde Todaro 4 , Maria dM Vivanco 5 , Gerolama Condorelli 1, 2 1 Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy 2 IEOS, CNR, Naples, Italy 3 IRCCS-SDN, Naples, Italy 4 Department of Pathobiology and Medical Biotechnology, University of Palermo, Palermo, Italy 5 CIC bioGUNE, Centre for Cooperative Research in Biosciences, Derio, Spain * These authors have contributed equally to the paper as first authors Correspondence to: Gerolama Condore…

0301 basic medicinecancer stem cellsApoptosisStem cell markermedicine.disease_causemicroRNAs Breast cancer Cancer stem cells BimL FIH1Mixed Function OxygenasesAntineoplastic Agent0302 clinical medicineCell MovementTumor Cells CulturedCell Self RenewalMixed Function OxygenaseBimLmicroRNACell HypoxiamicroRNAsGene Expression Regulation NeoplasticOncology030220 oncology & carcinogenesisNeoplastic Stem CellsFemaleBreast NeoplasmAdult stem cellHumanResearch PaperFIH1BimL; FIH1; breast cancer; cancer stem cells; microRNAsAntineoplastic AgentsBreast Neoplasms03 medical and health sciencesBreast cancerbreast cancerDownregulation and upregulationCancer stem cellmicroRNAmedicineBiomarkers TumorHumansCell Proliferationbusiness.industryCancer stem cellApoptosiRepressor Proteinmedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitMolecular medicineRepressor Proteins030104 developmental biologyDrug Resistance NeoplasmImmunologyCancer researchNeoplastic Stem CellCisplatinCarcinogenesisbusiness
researchProduct

Induced arginine transport via cationic amino acid transporter-1 is necessary for human T-cell proliferation

2015

Availability of the semiessential amino acid arginine is fundamental for the efficient function of human T lymphocytes. Tumor-associated arginine deprivation, mainly induced by myeloid-derived suppressor cells, is a central mechanism of tumor immune escape from T-cell-mediated antitumor immune responses. We thus assumed that transmembranous transport of arginine must be crucial for T-cell function and studied which transporters are responsible for arginine influx into primary human T lymphocytes. Here, we show that activation via CD3 and CD28 induces arginine transport into primary human T cells. Both naive and memory CD4(+) T cells as well as CD8(+) T cells specifically upregulated the hum…

0301 basic medicinechemistry.chemical_classificationArginine transportArginineT cellImmunologyCD28BiologyMolecular biologyAmino acid03 medical and health sciences030104 developmental biologyImmune systemmedicine.anatomical_structureDownregulation and upregulationchemistrymedicineImmunology and AllergyAmino acid transporterEuropean Journal of Immunology
researchProduct

Polyphosphate Reverses the Toxicity of the Quasi-Enzyme Bleomycin on Alveolar Endothelial Lung Cells In Vitro

2021

Simple Summary Bleomycin (BLM) is a medication introduced used to treat various types of cancer, including testicular cancer, ovarian cancer, and Hodgkin’s disease. Its most serious side effect is pulmonary fibrosis and impaired lung function. Using A549 human lung cells it is shown that, in parallel to an increased cell toxicity and DNA damage, BLM causes a marked enlargement of the cell nucleus. This effect is abolished by inorganic polyphosphate (polyP), if this physiological polymer is administered together with BLM. The detoxification of BLM is–most likely–caused by the upregulation of the gene encoding the BLM hydrolase which inactivates BLM in vitro and in vivo. This study contribute…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesCancer ResearchDNA damageBleomycinlcsh:RC254-282Article03 medical and health scienceschemistry.chemical_compound0302 clinical medicineanti-SARS-CoV-2 activityDownregulation and upregulationprevention of fibrosischemistry.chemical_classificationbleomycinpulmonary fibrosisurogenital systemChemistryCell growthCOVID-19nutritional and metabolic diseasespolyphosphatelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensMolecular biologyIn vitroChromatin030104 developmental biologyEnzymeOncology030220 oncology & carcinogenesisToxicityCancers
researchProduct

MECP2 impairs neuronal structure by regulating KIBRA

2016

Using a Drosophila model of MECP2 gain-of-function, we identified memory associated KIBRA as a target of MECP2 in regulating dendritic growth. We found that expression of human MECP2 increased kibra expression in Drosophila, and targeted RNAi knockdown of kibra in identified neurons fully rescued dendritic defects as induced by MECP2 gain-of-function. Validation in mouse confirmed that Kibra is similarly regulated by Mecp2 in a mammalian system. We found that Mecp2 gain-of-function in cultured mouse cortical neurons caused dendritic impairments and increased Kibra levels. Accordingly, Mecp2 loss-of-function in vivo led to decreased Kibra levels in hippocampus, cortex, and cerebellum. Togeth…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesCerebellumMethyl-CpG-Binding Protein 2Dendritic morphologyHippocampusDisease modelsHippocampusArticlelcsh:RC321-571MECP2Mice03 medical and health sciencesMemoryRNA interferencemental disordersmedicineAnimalsHumanslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryCerebral CortexNeuronsGene knockdownMECP2 duplication syndromebiologybiology.organism_classificationMECP2nervous system diseasesCortex (botany)Disease Models AnimalDrosophila melanogaster030104 developmental biologymedicine.anatomical_structureNeurologyCerebral cortexDrosophilaDrosophila melanogasterNeuroscienceNeurobiology of Disease
researchProduct

Bisphenolic compounds alter gene expression in MCF-7 cells through interaction with estrogen receptor α

2020

Plasticizers released from microplastic are increasingly viewed with concern. While adverse health effects induced by bisphenol A and its analogues on marine animals are well documented in the literature, the endocrine potential of bisphenolic compounds on human health remains elusive. We applied next generation sequencing (NGS) with the estrogen receptor α (ERα) positive human breast cancer cell line MCF-7 treated with 17-β-estradiol (E2), bisphenol A (BPA), bisphenol B (BPB), bisphenol Z (BPZ) and tetramethyl bisphenol A (4MeBPA). We used molecular docking, microscale thermophoresis, ERα activation assay, and cell cycle experiments on MCF-7 and ERα overexpressing HEK293 cells to verify th…

0301 basic medicineendocrine systemBisphenolDown-RegulationGene ExpressionEstrogen receptorBreast NeoplasmsEndocrine DisruptorsToxicologyCell Line03 medical and health sciences0302 clinical medicinePhenolsPlasticizersBCAS3Cell Line TumorHumansBenzhydryl CompoundsCell ProliferationInsulin-like growth factor 1 receptorPharmacologyEstradiolChemistryCell growthEstrogen Receptor alphaEstrogensCell cycleUp-RegulationHEK293 Cells030104 developmental biologyPRKCDMCF-7030220 oncology & carcinogenesisMCF-7 CellsCancer researchFemalehormones hormone substitutes and hormone antagonistsSignal TransductionToxicology and Applied Pharmacology
researchProduct

Mapping gene regulatory circuitry of Pax6 during neurogenesis.

2016

AbstractPax6 is a highly conserved transcription factor among vertebrates and is important in various aspects of the central nervous system development. However, the gene regulatory circuitry of Pax6 underlying these functions remains elusive. We find that Pax6 targets a large number of promoters in neural progenitors cells. Intriguingly, many of these sites are also bound by another progenitor factor, Sox2, which cooperates with Pax6 in gene regulation. A combinatorial analysis of Pax6-binding data set with transcriptome changes in Pax6-deficient neural progenitors reveals a dual role for Pax6, in which it activates the neuronal (ectodermal) genes while concurrently represses the mesoderma…

0301 basic medicineendocrine systemNeurogenesisBiologyBiochemistryArticle03 medical and health sciencesSOX2GeneticsMolecular BiologyTranscription factorGeneRegulation of gene expressionGeneticsGene knockdownNeurogenesisPromoterCell BiologyNeural progenitorseye diseasesChromatinCell biologyGene regulation030104 developmental biologyPAX6sense organsTranscription FactorsCell discovery
researchProduct

Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells In Vivo: A Physiological Glucocorticoids- and Nrf2-Dependent Mechanism

2016

Abstract Aims: Polyphenolic phytochemicals have anticancer properties. However, in mechanistic studies, lack of correlation with the bioavailable concentrations is a critical issue. Some reports had suggested that these molecules downregulate the stress response, which may affect growth and the antioxidant protection of malignant cells. Initially, we studied this potential underlying mechanism using different human melanomas (with genetic backgrounds correlating with most melanomas), growing in nude mice as xenografts, and pterostilbene (Pter, a natural dimethoxylated analog of resveratrol). Results: Intravenous administration of Pter decreased human melanoma growth in vivo. However, Pter, …

0301 basic medicineendocrine systemmedicine.medical_specialtyPterostilbenePhysiologyNF-E2-Related Factor 2Clinical BiochemistryMice NudeAntineoplastic AgentsAdrenocorticotropic hormoneResveratrolBiologyBiochemistryAntioxidants03 medical and health scienceschemistry.chemical_compoundGlucocorticoid receptorDownregulation and upregulationAdrenocorticotropic HormoneIn vivoInternal medicineCell Line TumorStilbenesmedicineAnimalsHumansMolecular BiologyGlucocorticoidsMelanomaGeneral Environmental ScienceMelanomaCell Biologymedicine.diseaseXenograft Model Antitumor AssaysIn vitroGene Expression Regulation NeoplasticOriginal Research Communications030104 developmental biologyEndocrinologychemistryCancer researchGeneral Earth and Planetary SciencesFemaleOxidation-ReductionAntioxidants & Redox Signaling
researchProduct