Search results for "Driving cycle"
showing 3 items of 13 documents
Interior Permanent Magnet Synchronous Machine Drive Powered by Fuel Cell for Automotive Applications
2020
Electric vehicles represent an optimal solution for the reduction of pollution in urban areas. In particular, the Fuel Cell (FC) technology is a promising solution especially for its charging times and zero CO2 direct emissions. The paper addresses the design and performance study of an Interior Permanent Magnet Synchronous Machine (IPMSM) drive powered by fuel cell for automotive applications. The IPMSM drive is powered by the use of 5,5 kW FC unit and it is composed of two DC-DC power converters and one inverter. In detail, a test bench has been carried out for the evaluation of the performances of each IPMSM drive conversion stage. Moreover, in order to simulate automotive working condit…
A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 2: Simulation results
2020
Abstract In this two-part work, an electric kinetic energy recovery system (e-KERS) for internal combustion engine vehicle (ICEV) is presented and its performance evaluated through numerical simulations. The KERS proposed is based on the use of a supercapacitor as energy storage, interfaced to a brushless machine through a properly designed power converter. In Part 1, the system is described and analysed, and the mathematical model used for the simulations is presented. For each component of the KERS, the real efficiency and the power or energy limitations are adequately considered. In Part 2, the energetic and economic advantages attainable by the proposed KERS are evaluated using MATLAB S…
A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 1: System analysis and …
2020
Abstract In this two-part work, an electric kinetic energy recovery system (e-KERS) for internal combustion engine vehicle (ICEV) is presented, and its performance evaluated through numerical simulations. The KERS proposed is based on the use of a supercapacitor as energy storage, interfaced to a brushless machine through a properly designed power converter. In part 1, the system is described and analysed, and the mathematical model used for the simulations is presented. For each component of the KERS, the real efficiency, and the power or energy limitations are adequately considered. In part 2, the energetic and economic advantages attainable by the proposed KERS are evaluated using MATLAB…