Search results for "Drosophila Protein"

showing 10 items of 240 documents

Retinal homeobox promotes cell growth, proliferation and survival of mushroom body neuroblasts in the Drosophila brain.

2016

Abstract The Drosophila mushroom bodies, centers of olfactory learning and memory in the fly ‘forebrain’, develop from a set of neural stem cells (neuroblasts) that generate a large number of Kenyon cells (KCs) during sustained cell divisions from embryonic to late pupal stage. We show that retinal homeobox ( rx ), encoding for an evolutionarily conserved transcription factor, is required for proper development of the mushroom bodies. Throughout development rx is expressed in mushroom body neuroblasts (MBNBs), their ganglion mother cells (MB-GMCs) and young KCs. In the absence of rx function, MBNBs form correctly but exhibit a reduction in cell size and mitotic activity, whereas overexpress…

0301 basic medicineEmbryologyanimal structuresNerve Tissue ProteinsBiologyRetina03 medical and health sciencesNeuroblastNeural Stem CellsAnimalsDrosophila ProteinsMitosisMushroom BodiesCell ProliferationGanglion CystsHomeodomain ProteinsNeuronsCell growthfungiCell CycleBrainNuclear ProteinsAnatomyEmbryonic stem cellNeural stem cellCell biologyRepressor Proteins030104 developmental biologyDrosophila melanogasterLarvaMushroom bodiesForebrainHomeoboxDevelopmental BiologyTranscription FactorsMechanisms of development
researchProduct

Rabphilin involvement in filtration and molecular uptake in Drosophila nephrocytes suggests a similar role in human podocytes

2020

ABSTRACT Drosophila nephrocytes share functional, structural and molecular similarities with human podocytes. It is known that podocytes express the rabphilin 3A (RPH3A)-RAB3A complex, and its expression is altered in mouse and human proteinuric disease. Furthermore, we previously identified a polymorphism that suggested a role for RPH3A protein in the development of urinary albumin excretion. As endocytosis and vesicle trafficking are fundamental pathways for nephrocytes, the objective of this study was to assess the role of the RPH3A orthologue in Drosophila, Rabphilin (Rph), in the structure and function of nephrocytes. We confirmed that Rph is required for the correct function of the en…

0301 basic medicineEndocytic cycle030232 urology & nephrologyRetinoic acidlcsh:MedicineMedicine (miscellaneous)Labyrinthine channelschemistry.chemical_compound0302 clinical medicineImmunology and Microbiology (miscellaneous)Chronic kidney diseaseDrosophila ProteinsSlit diaphragmGene knockdownPodocytesIntracellular Signaling Peptides and ProteinsDrosophila nephrocyteEndocytosisCell biologyProtein TransportDrosophila melanogasterLarvaSlit diaphragmFemaleRNA InterferenceEndocytic pathwaylcsh:RB1-214Research ArticleEndosomeNeuroscience (miscellaneous)Nerve Tissue ProteinsTretinoinCell fate determinationBiologyEndocytosisGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceslcsh:PathologyRabphilinAnimalsHumansCell Lineagelcsh:RCytoplasmic VesiclesDrosCubilinSurvival Analysis030104 developmental biologychemistrySilver NitrateDisease Models & Mechanisms
researchProduct

Adaptation of gene loci to heterochromatin in the course of Drosophila evolution is associated with insulator proteins.

2020

AbstractPericentromeric heterochromatin is generally composed of repetitive DNA forming a transcriptionally repressive environment. Dozens of genes were embedded into pericentromeric heterochromatin during evolution of Drosophilidae lineage while retaining activity. However, factors that contribute to insusceptibility of gene loci to transcriptional silencing remain unknown. Here, we find that the promoter region of genes that can be embedded in both euchromatin and heterochromatin exhibits a conserved structure throughout the Drosophila phylogeny and carries motifs for binding of certain chromatin remodeling factors, including insulator proteins. Using ChIP-seq data, we demonstrate that ev…

0301 basic medicineEuchromatinHeterochromatinEvolutionMolecular biologyAdaptation Biologicallcsh:MedicineInsulator (genetics)Chromatin remodelingArticleEvolutionary geneticsEvolution Molecular03 medical and health sciences0302 clinical medicineDrosophilidaeHeterochromatinAnimalsDrosophila ProteinsNucleotide Motifslcsh:ScienceEye ProteinsPromoter Regions GeneticGenePericentric heterochromatinPhylogenyGeneticsMultidisciplinarygeenitBinding Sitesbiologylcsh:RfungiChromosome MappingPromoterDNAbiology.organism_classificationChromatinDNA-Binding Proteins030104 developmental biologyGene Expression RegulationGenetic LociChromatin Immunoprecipitation SequencingMolecular evolutionlcsh:QDrosophilaTranscription Initiation SiteTranscription030217 neurology & neurosurgeryProtein BindingScientific reports
researchProduct

m6A modulates neuronal functions and sex determination in Drosophila

2016

N6-methyladenosine RNA (m6A) is a prevalent messenger RNA modification in vertebrates. Although its functions in the regulation of post-transcriptional gene expression are beginning to be unveiled, the precise roles of m6A during development of complex organisms remain unclear. Here we carry out a comprehensive molecular and physiological characterization of the individual components of the methyltransferase complex, as well as of the YTH domain-containing nuclear reader protein in Drosophila melanogaster. We identify the member of the split ends protein family, Spenito, as a novel bona fide subunit of the methyltransferase complex. We further demonstrate important roles of this complex in …

0301 basic medicineGeneticsMessenger RNAMultidisciplinarybiologyProtein familyMethyltransferase complexEffectorRNA-binding proteinbiology.organism_classificationCell biology03 medical and health sciences030104 developmental biology0302 clinical medicineNuclear proteinDrosophila melanogaster030217 neurology & neurosurgeryDrosophila ProteinNature
researchProduct

Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular proces…

2018

This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence f…

0301 basic medicineGlycosylationSaccharomyces cerevisiae ProteinsRNA-binding proteinSaccharomyces cerevisiaeBiologyEndoplasmic ReticulumMannosyltransferases03 medical and health scienceschemistry.chemical_compoundCongenital Disorders of GlycosylationNeoplasmsNuclear Receptor Subfamily 4 Group A Member 2GeneticsAnimalsDrosophila ProteinsHumansMolecular BiologyTranscription factorOSBPGeneGenetics (clinical)Cellular compartmentEndoplasmic reticulumMembrane ProteinsRNA-Binding ProteinsGeneral MedicineLRP1Cell biology030104 developmental biologychemistryNerve DegenerationDrosophilaCarrier ProteinsHuman molecular genetics
researchProduct

The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and…

2018

[EN] Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in C…

0301 basic medicineHuntingtinNotchProtein familyCardiomyopathyNeuroscience (miscellaneous)Notch signaling pathwayMedicine (miscellaneous)lcsh:Medicinemedicine.disease_causeGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesImmunology and Microbiology (miscellaneous)JPH2BIOQUIMICA Y BIOLOGIA MOLECULARHuntingtin Proteinmedicinelcsh:PathologyGeneticsMutationbiologylcsh:RHuntington's diseasebiology.organism_classification030104 developmental biologyJunctophilinDrosophilaDrosophila melanogasterDrosophila Proteinlcsh:RB1-214Disease Models & Mechanisms
researchProduct

Knockdown of Drosophila hemoglobin suggests a role in O2 homeostasis.

2016

Almost all insects are equipped with a tracheal system, which appears to be sufficient for O2 supply even in phases of high metabolic activity. Therefore, with the exception of a few species dwelling in hypoxic habitats, specialized respiratory proteins had been considered unnecessary in insects. The recent discovery and apparently universal presence of intracellular hemoglobins in insects has remained functionally unexplained. The fruitfly Drosophila melanogaster harbors three different globin genes (referred to as glob1-3). Glob1 is the most highly expressed globin and essentially occurs in the tracheal system and the fat body. To better understand the functions of insect globins, the lev…

0301 basic medicineMaleParaquatTransgenemedia_common.quotation_subjectInsectBiochemistry03 medical and health sciencesHemoglobinsRNA interferenceAnimalsDrosophila ProteinsHomeostasisGlobinMolecular Biologymedia_commonGeneticschemistry.chemical_classificationGene knockdownReactive oxygen speciesbiologyfungiGene Expression Regulation Developmentalbiology.organism_classificationCell biologyGlobinsOxygenOxidative Stress030104 developmental biologyDrosophila melanogasterchemistryInsect ScienceGene Knockdown TechniquesLarvaFemaleRNA InterferenceDrosophila melanogasterReactive Oxygen SpeciesHomeostasisInsect biochemistry and molecular biology
researchProduct

High Throughput Sequencing Identifies Misregulated Genes in the Drosophila Polypyrimidine Tract-Binding Protein (hephaestus) Mutant Defective in Sper…

2015

The Drosophila polypyrimidine tract-binding protein (dmPTB or hephaestus) plays an important role during spermatogenesis. The heph2 mutation in this gene results in a specific defect in spermatogenesis, causing aberrant spermatid individualization and male sterility. However, the array of molecular defects in the mutant remains uncharacterized. Using an unbiased high throughput sequencing approach, we have identified transcripts that are misregulated in this mutant. Aberrant transcripts show altered expression levels, exon skipping, and alternative 5' ends. We independently verified these findings by reverse-transcription and polymerase chain reaction (RT-PCR) analysis. Our analysis shows m…

0301 basic medicineMalePhysiologyMutantGene Expressionlcsh:MedicineArtificial Gene Amplification and ExtensionPolymerase Chain ReactionBiochemistryConserved sequence0302 clinical medicineSequencing techniquesReproductive PhysiologyAnimal CellsInvertebrate GenomicsMedicine and Health SciencesDrosophila ProteinsProtein IsoformsCell Cycle and Cell Divisionlcsh:ScienceConserved SequencePhylogenyGeneticsRegulation of gene expressionMultidisciplinarybiologyChromosome BiologyDrosophila MelanogasterMessenger RNAHigh-Throughput Nucleotide SequencingRNA sequencingAnimal ModelsGenomicsSpermatidsInsectsNucleic acidsMeiosisCell ProcessesDrosophilaDrosophila melanogasterTranscription Initiation SiteCellular TypesDrosophila ProteinPolypyrimidine Tract-Binding ProteinResearch ArticleArthropodaMolecular Sequence DataReal-Time Polymerase Chain ReactionResearch and Analysis Methods03 medical and health sciencesModel OrganismsGeneticsAnimalsPolypyrimidine tract-binding proteinRNA MessengerSpermatogenesisMolecular Biology TechniquesMolecular BiologyBinding SitesBase SequenceGene Expression Profilinglcsh:ROrganismsBiology and Life SciencesCell BiologyReverse Transcriptase-Polymerase Chain Reactionbiology.organism_classificationInvertebratesExon skippingSpermGene expression profiling030104 developmental biologyGene OntologyGerm CellsGene Expression RegulationAnimal GenomicsMutationbiology.proteinRNAlcsh:QTranscriptome030217 neurology & neurosurgeryPLoS ONE
researchProduct

Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity

2017

Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster. Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have m…

0301 basic medicineMetal toxicityDiseaseComputational biologyReviewCatalysisInorganic Chemistrylcsh:Chemistry03 medical and health sciencesironATP7Metals HeavyMetalloproteinsmedicineAnimalsDrosophila ProteinsToxicologiaPhysical and Theoretical ChemistryMolecular BiologyGeneDrosophilalcsh:QH301-705.5SpectroscopyOrganismMetal Metabolism Inborn ErrorsMetal metabolismfrataxinbiologyEcologyOrganic ChemistryNeurodegenerationzincneurodegenerationGeneral Medicinemedicine.diseasebiology.organism_classificationdZip99CComputer Science ApplicationsDisease Models Animal030104 developmental biologyDrosophila melanogasterlcsh:Biology (General)lcsh:QD1-999coppermetal homeostasisDrosophilaDrosophila melanogasterheavy metal toxicityGenètica
researchProduct

Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

2016

Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel find…

0301 basic medicineMethyl-CpG-Binding Protein 2lcsh:MedicineApoptosisBiochemistryPhosphoserine0302 clinical medicineAnimal CellsDrosophila ProteinsPost-Translational ModificationPhosphorylationlcsh:ScienceNeuronsMotor NeuronsGeneticsMultidisciplinaryCell DeathbiologyDrosophila MelanogasterAnimal ModelsInsectsFOXG1Cell ProcessesCaspasesPhosphorylationDrosophilaBiological CulturesCellular TypesDrosophila melanogasterResearch ArticleGene isoformcongenital hereditary and neonatal diseases and abnormalitiesArthropodaProtein domainMouse ModelsMotor ActivityResearch and Analysis MethodsTransfectionModels BiologicalMECP203 medical and health sciencesModel OrganismsProtein Domainsmental disordersAnimalsHumansMolecular Biology TechniquesImmunohistochemistry TechniquesMolecular BiologyTranscription factorBinding proteinlcsh:ROrganismsBiology and Life SciencesProteinsCell BiologyCell Culturesbiology.organism_classificationInvertebratesHistochemistry and Cytochemistry TechniquesHEK293 Cells030104 developmental biologyCellular NeuroscienceMutationImmunologic TechniquesMutant Proteinslcsh:Q030217 neurology & neurosurgeryNeuroscienceTranscription FactorsPLoS ONE
researchProduct