Search results for "Drug development"

showing 10 items of 115 documents

Multi-omics approaches to improve malaria therapy.

2021

Malaria contributes to the most widespread infectious diseases worldwide. Even though current drugs are commercially available, the ever-increasing drug resistance problem by malaria parasites poses new challenges in malaria therapy. Hence, searching for efficient therapeutic strategies is of high priority in malaria control. In recent years, multi-omics technologies have been extensively applied to provide a more holistic view of functional principles and dynamics of biological mechanisms. We briefly review multi-omics technologies and focus on recent malaria progress conducted with the help of various omics methods. Then, we present up-to-date advances for multi-omics approaches in malari…

0301 basic medicineProteomicsPlasmodiumComputer scienceDrug ResistanceDisease03 medical and health sciencesAntimalarials0302 clinical medicineTreatment targetsBasic researchparasitic diseasesmedicineAnimalsHumansMetabolomicsPharmacologyGenomicsmedicine.diseaseMalaria030104 developmental biologyRisk analysis (engineering)Drug development030220 oncology & carcinogenesisMulti omicsMalaria controlMalariaPharmacological research
researchProduct

Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach

2018

Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This netw…

0301 basic medicineRMSystems AnalysisNF-E2-Related Factor 2MedicinaNF-KAPPA-BAnti-Inflammatory AgentsTYPE-2 DIABETES-MELLITUSGENE PROMOTER POLYMORPHISMDiseaseComputational biologyInteractomeenvironment and public healthGLYCOGEN-SYNTHASE KINASETUMOR-SUPPRESSOR PTENNRF203 medical and health sciencesDrug DiscoveryAnimalsHumansTherapeutic targetsMedicineMolecular Targeted TherapyBardoxolone methylPLACEBO-CONTROLLED PHASE-3PharmacologyMechanism (biology)Drug discoverybusiness.industryDrug RepositioningRChronic inflammationrespiratory systemHEME OXYGENASE 1PROTEIN-PROTEIN INTERACTION3. Good healthSystems medicineDrug repositioning030104 developmental biologyDrug developmentEXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITISChronic DiseaseSystems medicineMolecular MedicineFUMARIC-ACID ESTERSbusiness
researchProduct

Assessment of in vivo organ-uptake and in silico prediction of CYP mediated metabolism of DA-Phen, a new dopaminergic agent

2017

Abstract The drug development process strives to predict metabolic fate of a drug candidate, together with its uptake in major organs, whether they act as target, deposit or metabolism sites, to the aim of establish a relationship between the pharmacodynamics and the pharmacokinetics and highlight the potential toxicity of the drug candidate. The present study was aimed at evaluating the in vivo uptake of 2-Amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (DA-Phen) − a new dopaminergic neurotransmission modulator, in target and non-target organs of animal subjects and integrating these data with SMARTCyp results, an in silico method that predicts the sites of cytochrome P450-m…

0301 basic medicineSMARTCyp predictionIn silicoDopaminePhenylalanineDopamine AgentsPharmacologyBiologyMolecular Dynamics SimulationBiochemistry03 medical and health sciencesPharmacokineticsCytochrome P-450 Enzyme SystemStructural BiologyIn vivoDopaminein silico metabolism predictionmedicineDa-PhenAnimalsComputer SimulationRats WistarOrganic ChemistryDopaminergicBrain homogenate analysiProdrugRatsComputational Mathematics030104 developmental biologyDrug developmentSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPharmacodynamicsOrgan uptakeInjections Intraperitonealmedicine.drug
researchProduct

Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning.

2021

Coronavirus disease 2019 (COVID-19) is a major threat worldwide due to its fast spreading. As yet, there are no established drugs available. Speeding up drug discovery is urgently required. We applied a workflow of combined in silico methods (virtual drug screening, molecular docking and supervised machine learning algorithms) to identify novel drug candidates against COVID-19. We constructed chemical libraries consisting of FDA-approved drugs for drug repositioning and of natural compound datasets from literature mining and the ZINC database to select compounds interacting with SARS-CoV-2 target proteins (spike protein, nucleocapsid protein, and 2′-o-ribose methyltransferase). Supported by…

0301 basic medicineSimeprevirArtificial intelligencevirusesMERS Middle East Respiratory SyndromeHealth InformaticsBiologyMachine learningcomputer.software_genremedicine.disease_causeAntiviral AgentsArticleWHO World Health OrganizationAUC area under the curve03 medical and health sciences0302 clinical medicinessRNA single-stranded RNA virusmedicineChemotherapyHumansSARS severe acute respiratory syndromeCOVID-19 coronavirus disease 2019CoronavirusNatural productsVirtual screeningACE2 angiotensin converting enzyme 2Drug discoverybusiness.industrySARS-CoV-2COVID-19LBE lowest binding energyFDA Food and Drug AdministrationROC receiver operating characteristicComputer Science ApplicationsHIV human immunodeficiency virusMolecular Docking SimulationDrug repositioning030104 developmental biologyDrug developmentSevere acute respiratory syndrome-related coronavirusParitaprevirInfectious diseasesRespiratory virusArtificial intelligenceSupervised Machine Learningbusinesscomputer030217 neurology & neurosurgeryComputers in biology and medicine
researchProduct

Repurposing old drugs to fight multidrug resistant cancers.

2020

Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approa…

0301 basic medicineVirtual screeningCancer ResearchDrug repurposingSettore BIO/11 - Biologia MolecolareAntineoplastic AgentsDrug resistanceBioinformatics03 medical and health sciencesClinical cancer trials; Drug repurposing; Multidrug resistant cancer; Pharmacophore modelling; Virtual screening0302 clinical medicineNeoplasmsDrug DiscoveryMedicineHumansPharmacology (medical)Computer SimulationRepurposingPharmacologyVirtual screeningDrug discoverybusiness.industryDrug RepositioningComputational BiologyDrug Resistance Multiple3. Good healthMultiple drug resistanceDrug repositioning030104 developmental biologyInfectious DiseasesOncologyDrug developmentDrug Resistance Neoplasm030220 oncology & carcinogenesisMultidrug resistant cancerPharmacophore modellingPharmacophorebusinessClinical cancer trialsDrug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy
researchProduct

Why Are New Drugs Expensive and How Can They Stay Affordable?

2019

Increasing life expectancy leading to a higher median age causes an increasing need for healthcare resources, which is aggravated by an increasing prevalence of preventable diseases such as type 2 diabetes. This includes increasing expenditures for medicines, although these increases when expressed as a share of overall societal wealth are more moderate than often claimed. An increasing use of generic medicines (currently about 90% of all prescriptions) means that costs for discovery and development of innovative drugs must be recovered on a shrinking percentage of prescriptions. However, the key challenge to affordable drugs is exponentially increasing costs to bring a new medicine to the …

0301 basic medicinebusiness.industryMedizinmedicine.diseaseA share03 medical and health sciences030104 developmental biology0302 clinical medicineDrug developmentHealth careDevelopment economicsmedicineLife expectancyAttrition030212 general & internal medicineBusinessMedical prescriptionDrug pricing
researchProduct

Anticancer properties of 5Z-(4- fuorobenzylidene)-2-(4- hydroxyphenylamino)-thiazol-4-one

2019

Abstract4-thiazolidinones, which are privileged structures in medicinal chemistry, comprise the well-known class of heterocycles and are a source of new drug-like compounds. Undoubtedly, the 5-bulky-substituted-2,4-thiazolidinediones - a class of antihyperglycemic glitazones, which are peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are the most described group among them. As there are various chemically distinct 4-thiazolidinones, different subtypes have been selected for studies; however, their main pharmacological profiles are similar. The aim of this study was to evaluate the anticancer activity of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one (Les-2…

0301 basic medicinelcsh:MedicineAntineoplastic AgentsApoptosisDrug developmentArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line TumorLactate dehydrogenaseHumansViability assaylcsh:ScienceCytotoxicityReceptorchemistry.chemical_classificationReactive oxygen speciesMultidisciplinaryDose-Response Relationship DrugL-Lactate DehydrogenaseMolecular medicineCaspase 3lcsh:RMetabolismPeroxisomeThiazoles030104 developmental biologychemistryBiochemistryA549 CellsPreclinical researchCell culturelcsh:QCaco-2 CellsReactive Oxygen Species030217 neurology & neurosurgeryScientific Reports
researchProduct

Protein kinase inhibitor-based cancer therapies: Considering the potential of nitric oxide (NO) to improve cancer treatment.

2020

The deregulation of a wide variety of protein kinases is associated with cancer cell initiation and tumor progression. Owing to their indispensable function in signaling pathways driving malignant cell features, protein kinases constitute major therapeutic targets in cancer. Over the past two decades, intense efforts in drug development have been dedicated to this field. The development of protein kinase inhibitors (PKIs) have been a real breakthrough in targeted cancer therapy. Despite obvious successes across patients with different types of cancer, the development of PKI resistance still prevails. Combination therapies are part of a comprehensive approach to address the problem of drug r…

0301 basic medicinemedicine.drug_class[SDV]Life Sciences [q-bio]Nitric OxideBiochemistry03 medical and health sciences0302 clinical medicineNeoplasmsAntineoplastic Combined Chemotherapy ProtocolsMedicineHumansNitric Oxide DonorsMolecular Targeted TherapyProtein kinase AProtein Kinase InhibitorsPharmacologybusiness.industryKinaseCancerProtein kinase inhibitormedicine.disease3. Good health030104 developmental biologyDrug developmentTumor progressionDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer cellCancer researchSignal transductionbusinessProtein KinasesSignal TransductionBiochemical pharmacology
researchProduct

North African Medicinal Plants Traditionally Used in Cancer Therapy.

2017

Background: Cancer is a major cause of mortality worldwide with increasing numbers by the years. In North Africa, the number of cancer patients is alarming. Also shocking is that a huge number of cancer patients only have access to traditional medicines due to several factors, e.g., economic difficulties. In fact, medicinal plants are widely used for the treatment of several pathologies, including cancer. Truthfully, herbalists and botanists in North African countries prescribe several plants for cancer treatment. Despite the popularity and the potential of medicinal plants for the treatment of cancer, scientific evidence on their anticancer effects are still scarce for most of the describe…

0301 basic medicinemedicine.medical_specialtyAlternative medicineCancer therapyReviewanticancerethnobotanicalScientific evidence03 medical and health sciences0302 clinical medicinemedicinecancerPharmacology (medical)Medicinal plantsPharmacologyTraditional medicinebusiness.industrylcsh:RM1-950Cancerfood and beveragesmedicine.diseaseNorth AfricaClinical trial030104 developmental biologylcsh:Therapeutics. PharmacologyDrug development030220 oncology & carcinogenesisEthnobotanybusinessmedicinal plantsFrontiers in pharmacology
researchProduct

Expanding the Therapeutic Spectrum of Artemisinin: Activity Against Infectious Diseases Beyond Malaria and Novel Pharmaceutical Developments

2016

The interest of Western medicine in Traditional Chinese Medicine (TCM) as a source of drug leads/new drugs to treat diseases without available efficient therapies has been dramatically augmented in the last decades by the extensive work and the outstanding findings achieved within this kind of medicine. The practice of TCM over thousands of years has equipped scientists with substantial experience with hundreds of plants that led to the discovery of artemisinin (qinghaosu), which is extracted from the medicinal plant Artemisia annua L. (qinghao). The unexpected success of artemisinin in combating malaria has drawn strong attention from the scientific community towards TCM. Artemisinin was d…

0301 basic medicinemedicine.medical_treatmentArtemisia annuaDihydroartemisininArtemisia annuaAsteraceaePharmacology03 medical and health scienceschemistry.chemical_compoundArtemisinin-loaded nanocarriersparasitic diseasesmedicineTraditional Chinese MedicineArtemetherArtemisininlcsh:R5-920biologyChemistryArtemisinin Dimerbiology.organism_classificationAnti-pathogen activity030104 developmental biologyComplementary and alternative medicineDrug developmentArtesunateDrug deliveryArtemisinin derivativesAntimalarial drugslcsh:Medicine (General)Antiviral propertiesmedicine.drugWorld Journal of Traditional Chinese Medicine
researchProduct