Search results for "Dye-sensitized solar cell"
showing 10 items of 78 documents
Effect of the linkage location in double branched organic dyes on the photovoltaic performance of DSSCs
2015
Two novel double branched D–π–A organic dyes (DB dyes) are synthesized to investigate the influence of the linkage location in DB dyes on the performance of dye-sensitized solar cells (DSSCs), where phenothiazine is introduced as a donor, thiophene–benzotriazole unit as the π-bridge and cyanoacrylic acid as the electron-acceptor. The photophysical, electrochemical and photovoltaic properties of the dyes are systematically investigated. The results show that the location of the linkage unit has a small effect on the physical and electrochemical properties of the dyes. However, when the dyes are applied in DSSCs, an obvious decline of short-circuit current (Jsc) and open-circuit voltage (Voc)…
Metal-free organic dyes with di(1-benzothieno)[3,2-b:2′,3′-d]pyrrole as an auxiliary donor for efficient dye-sensitized solar cells: Effect of the mo…
2019
Abstract A series of novel di(1-benzothieno)[3,2-b:2′,3′-d]pyrrole (DBTP)-based organic dyes (WL5-10) with D-D-π-A or D-D-A-π-A configurations are designed and the relationship between the properties and molecular configurations of these organic dyes are studied systematically. WL5,7–8 with D-D-π-A configuration incorporating triphenylamine or phenothiazine as donor and DBTP as auxiliary donor and WL9-10 with D-D-A-π-A configuration incorporating benzothiadiazole as an auxiliary acceptor are synthesized to study the effect of the molecular engineering on the photovoltaic performance. WL5,7–8 exhibit similar absorption spectra and high molar extinction coefficient. Especially, the dye WL5 wi…
Dithienopyrrolobenzothiadiazole-based organic dyes for efficient dye-sensitized solar cells
2014
Four novel D–π–A metal-free organic dyes DTP1–4 containing a dithienopyrrolobenzothiadiazole (DTPBT) unit were synthesized and applied in dye-sensitized solar cells, where DTPBT was employed as a π-spacer for the first time. The photophysical, electrochemical and photovoltaic properties of the dyes were systematically investigated. The dyes DTP1–4 showed broad absorption spectra and high molar extinction coefficient, resulting in high light harvesting efficiency. In addition, the impacts of donors and the thiophene unit as an additional π-spacer were also studied. The results showed that the dye DTP4 with triphenylamine as the donor exhibited better photovoltaic performance than DTP1–3 with…
Anti-recombination organic dyes containing dendritic triphenylamine moieties for high open-circuit voltage of DSSCs
2013
Abstract Three novel sensitizers with dendritic triphenylamine moieties were synthesized and used for dye-sensitized solar cells (DSSCs). Their absorption spectra, electrochemical and photovoltaic properties were extensively investigated. All three DSSCs exhibit high open-circuit voltage over 0.8 V. The photovoltaic results indicate that the dendritic triphenylamine units improve the open-circuit voltage, which is attributed to the retardation of charge recombination, demonstrating that non-planar and larger molecules exert better blocking function. Under standard global AM 1.5 solar conditions, the best performance of the DSSCs exhibits a short-circuit current density of 10.35 mA cm−2, an …
Double D–π–A branched dyes – a new class of metal-free organic dyes for efficient dye-sensitized solar cells
2017
Double branched donor acceptor compounds (D–π–A)2L, whose separate branches are linked by saturated chains or ring systems, are highly promising sensitizers for dye-sensitized solar cells (DSSCs). Their photovoltaic performance η (power conversion efficiency PCE) is higher than the η value of the corresponding single branched sensitizers D–π–A. This advantage can be attributed to the lower aggregation tendency and to the higher loading density of the chromophores on the semi-conductor surface (TiO2). Moreover, the intramolecular transfer of the excitation energy can enhance the contact time of the adsorbed dye molecules in the excited state S1 and thus reduce the unwanted charge recombinati…
Exciton diffusion controlled quantum efficiency in hybrid dye sensitized solar cells.
2009
Well-ordered and uniform titania nanoparticle arrays were synthesized using diblock copolymers as structure directing agents. High molecular weight copolymers of polystyrene-b-polyethylene oxide and poly(methylmethacrylate)-b-polyethylene oxide were used to control the distance between titania nanoparticles in the range of 20-60 nm. Using these titania nanoparticle arrays and regioregular poly(3-hexylthiophene), models for a dye sensitized photovoltaic cell were assembled, in which the interparticle spacing was systematically varied. In these simplified solar cells, the titania nanocrystals were surrounded by a continuous regioregular poly(3-hexylthiophene) phase. The spacing between the ti…
Phenothiazine dye featuring encapsulated insulated molecular wire as auxiliary donor for high photovoltage of dye-sensitized solar cells by suppressi…
2019
Abstract Two efficient dye-sensitized solar cells have been fabricated by two novel D–D–π–A phenothiazine-based organic dyes (PH2 and PH3) with an encapsulated insulated molecular wire (EIMW) as an auxiliary donor. The cell sensitized by PH2 with EIMW as an auxiliary donor shows a much higher photovoltage (Voc) relative to the reference dye PH1 without EIMW, because the former dye can inhibit dye aggregation and suppress the charge recombination effectively. The results show that the cell sensitized by PH2 with co-adsorption of chenodeoxycholic acid obtains a high power conversion efficiency, even higher than that of the cell based on N719. Thus, an effective way to increase the photovoltag…
Influence of Nitrogen Doping on Device Operation for TiO 2 -Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices
2016
International audience; Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO 2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal o…
Synchrotron Radiation and Chemistry: Studies of Materials for Renewable Energy Sources
2014
We present an overview of selected applications of synchrotron radiation methods to topical chemical research. The analysis is limited to the studies on materials for renewable energy sources, focussing on topics peculiar to chemical research, such as reactivity and synthesis routes; in particular, the paper takes into account subjects having some relevance for the production and storage of energy based on hydrogen. Hydrogen production and storage are taken into account in the sections concerning: (i) Dye-sensitized solar cells, (ii) Metal-organic frameworks and (iii) Hydrides for hydrogen storage; production of energy by fuel cell devices is treated in (iv) Oxide ion and proton conductors …
Multifunctional derivatives of dimethoxy-substituted triphenylamine containing different acceptor moieties
2020
This project has received funding from the Research Council of Lithuania (LMTLT), Agreement No. [S-LZ-19-2]. This research was funded by the Région Centre, the Tunisian ministry of research, University of Monastir and the French ministry of Higher Education and Research. J. Bouclé would like to thank the Sigma-Lim LabEx environment for financial supports, and the PLATINOM facility at XLIM laboratory regarding device fabrication and characterizations. DG acknowledges the Lithuanian Academy of Sciences for the financial support.