Search results for "Dynamic mechanical analysis"

showing 10 items of 82 documents

Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites

2014

Abstract This work investigates the hydrothermal ageing behaviour of a carbon fibre reinforced laminate and its epoxy matrix in bulk conditions. A model DGEBA epoxy is employed, and water uptake and dynamic mechanical thermal (DMTA) analyses have been performed on both the composites and bulk resin. Fracture toughness of the bulk resin has been measured, evidencing a substantially unmodified critical stress intensity factor KIC, although the evidence of plasticisation effects given by DMTA. Interlaminar Mode I fracture toughness of the composite showed a variable trend towards slight decreases or slight increases, according to the prevailing toughening or embrittling mechanisms activated by…

Materials scienceMechanical EngineeringPolymer–matrix composites (PMCs) Fracture toughness Environmental degradation Thermal analysisComposite numberDelaminationEpoxyDynamic mechanical analysisIndustrial and Manufacturing EngineeringHydrothermal circulationSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineFracture toughnessMechanics of MaterialsAgeingvisual_artCeramics and Compositesvisual_art.visual_art_mediumFracture (geology)Settore CHIM/07 - Fondamenti Chimici Delle TecnologieComposite material
researchProduct

Fracture Toughness of Hydrothermally Aged Epoxy Systems with Different Crosslink Density

2015

Abstract The present work investigates the fracture toughness behaviour of Single Edge Notched Bending (SENB) samples of epoxy systems subject to water uptake aging. Two epoxy systems with a significantly different Glass Transition Temperature, T g , are in particular considered: a typical commercial non-aeronautical grade resin matrix for composite applications, reaching a T g of 90 °C, and a DGEBA+DDS epoxy system achieving a T g of 230 °C.The materials have been conditioned by hydrothermal aging in a thermal bath at the temperature of 50 °C. TransmissionPhotoelastic Stress Analysisis carried outon SENB samples during water aging, monitoring the presence and evolution of swelling stresses…

Materials sciencePhotoelastic Stress AnalysiImage AnalysiComposite numberPhotoelastic Stress AnalysisStress (mechanics)Thermosetting ResinFracture toughnessEngineering (all)Fracture ToughnessHydrothermal AgingFracture Toughness; Hydrothermal Aging; Image Analysis; Photoelastic Stress Analysis; Swelling Stresses; Thermosetting Resin; Engineering (all)Composite materialEngineering(all)Image Analysis.General MedicineEpoxyDynamic mechanical analysisFracture ToughneSwelling StresseSwelling Stressesvisual_artvisual_art.visual_art_mediumFracture (geology)Gravimetric analysisGlass transition
researchProduct

A simple interpretation of the effect of the polymer type on the properties of PMBs for road paving applications

2018

Abstract The paper presents the results of the rheological characterisation of polymer-modified bitumen for paving applications. In order to find a simple interpretation of the influence of polymer type on the blends produced, in this study high density and low density polyethylene (PE) with different chemical properties were used, as well as ethylene-vinyl acetate. The chemical characteristics of the base bitumen and the polymers used were determined by means of SARA analysis and Fourier Transform Infrared Spectroscopy, FTIR, respectively. The morphology of the produced blends was investigated by means of fluorescent light optic microscopy, while the mechanical properties were investigated…

Materials sciencePolymer crystallinity0211 other engineering and technologies02 engineering and technologyCrystallinityViscosityRheology021105 building & constructionSettore ICAR/04 - Strade Ferrovie Ed AeroportiGeneral Materials ScienceFourier transform infrared spectroscopyComposite materialCivil and Structural Engineeringchemistry.chemical_classificationPolarityBuilding and ConstructionDynamic mechanical analysisPolymer021001 nanoscience & nanotechnologyShear rateLow-density polyethyleneSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryPolymer modified bitumenFlow curveMaterials Science (all)Road application0210 nano-technologyConstruction and Building Materials
researchProduct

Characterizations of Thermoplastic Block Elastomers Based on Polybutadiene and ε -Caprolactone

2010

A broad series of tri- and multiblock copolymers based on linear and branched oligomers of polybutadiene as central blocks and polycaprolactone (PCL) as block extremities are characterized by SEC, DSC, DMA, Dynamical Rheology and DRX. DSC analyses reveal phase separation between the two amorphous PB and PCL phases. By thermal analysis, the glass transition temperature of PCL is only detected for materials containing at least 80% w/w of PCL. This is attributed to the small length of the polyester blocks for copolymers containing less than 80% w/w of PCL. The increase of fusion heat with increasing PCL content in the copolymers is correlated to the greater ability of PCL chains to rearrange a…

Materials sciencePolymers and PlasticsEnthalpy of fusionGeneral ChemistryDynamic mechanical analysisElastomerchemistry.chemical_compoundPolybutadienechemistryPolycaprolactoneMaterials ChemistryCeramics and CompositesThermoplastic elastomerComposite materialGlass transitionCaprolactoneJournal of Macromolecular Science, Part A
researchProduct

Long-term ISO 23936-2 sweet oil ageing of HNBR

2021

Abstract A hydrogenated nitrile butadiene rubber (HNBR) compound is subjected to ageing in a simulated oil and gas environment in accordance with ISO 23936-2 standard at two elevated temperatures (130 °C and 150 °C) for a period of up to 9 months. Shore D hardness, thermal expansion, dynamic mechanical analysis (DMA), Fourier transform infrared (FTIR) spectroscopy, compression and compression set (CS) measurements are made before and after the chemical exposure. The hardness, modulus at short times, degree of relaxation and CS increases while the coefficient of thermal expansion in HNBR tends to decrease with ageing time and temperature. Temperature is shown to impose a greater effect on th…

Materials sciencePolymers and PlasticsISO 23936-2Organic Chemistry:Plast- og komposittmaterialer: 523 [VDP]Compression setViscoelasticityContext (language use)Material degradationDynamic mechanical analysisHNBRThermal expansion:Polymer and plastics: 523 [VDP]TP1080-1185ddc:540Stress relaxationShore durometerPolymers and polymer manufactureComposite materialGlass transitionSweet oil ageingElastic modulus
researchProduct

Dynamic mechanical properties of semi-interpenetrating networks based on poly(styrene-co-maleic anhydride): 3. Poly(2,6-dimethyl-1,4-phenylene ether)…

1994

Semi-IPN's based on linear poly(2,6-dimethyl-1,4-phenylene ether) (PPE) and diamine crosslinked poly(styrene-co-maleic anhydride) (PScoMA) copolymers containing small amounts of maleic anhydride (PSA=4.7wt.-% MA, PSB=5.8 wt-% MA) are studied with respect to the influence of cross-linking on the phase behavior. Temperature-dependent dynamic mechanical analysis (DMA) and DSC show that the semi-IPN's prepared from concentrated solution show weak crystallinity of the PPE phase. After heating above the PPE melting transition the semi-IPN's remain amorphous and the relaxation in the glass transition region as well as the terminal relaxation of the free PPE chains in the network is studied as a fu…

Materials sciencePolymers and PlasticsMaleic anhydrideDynamic mechanical analysisStyrenechemistry.chemical_compoundCrystallinityColloid and Surface ChemistrychemistryPhenyleneDiaminePolymer chemistryMaterials ChemistryCopolymerPhysical and Theoretical ChemistryGlass transitionColloid and Polymer Science
researchProduct

Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechani…

2012

[EN] This paper reports the effects of multiple mechanical recycling on the structure and properties of amorphous polylactide (PLA). The influence of the thermo-mechanical degradation induced by means of five successive injection cycles was initially addressed in terms of macroscopic mechanical properties and surface modification. A deeper inspection on the structure and morphology of PLA was associated to the thermal properties and viscoelastic behaviour. Although FT-IR analysis did not show significant changes in functional groups, a remarkable reduction in molar mass was found by viscometry. PLA remained amorphous throughout the reprocessing cycles, but the occurrence of a cold-crystalli…

Materials sciencePolymers and PlasticsMechanical propertiesViscoelasticityThermo-mechanical degradationThermodynamic propertiesDegradationSegmental dynamicsCold-crystallizationMaterials ChemistryMechanical recyclingRecyclingComposite materialMaterialsMolar massTermoplàsticsViscometerDynamic mechanical analysisCondensed Matter PhysicsMaterial valorisationAmorphous solidDynamicsPolylactide (PLA)Mechanics of MaterialsPolylactidesMAQUINAS Y MOTORES TERMICOSFunctional groupsSurface modificationRelaxation (physics)Degradation (geology)
researchProduct

Poly(styrene-b-methyl methacrylate) block copolymers as compatibilizing agents in blends of poly(styrene-co-acrylonitrile) and poly(2,6-dimethyl-1,4-…

1993

Abstract The influence of the molecular weight of the symmetric block copolymer poly(styrene-b-methyl methacrylate) (P(S-b-MMA)) in blends with high-molecular-weight poly(styrene-co-acrylonitrile) (PSAN) and poly(2,6-dimethyl-1,4-phenylene ether) (PPE) is investigated by dynamic mechanical analysis and transmission electron microscopy. Total molecular weights of the block copolymers vary from 16 up to 275 kg mol−1. Independent of molecular weight, all block copolymers locate to the interface with strong dispersing efficiency. The different block copolymers also showed approximately the same emulsifying efficiency. The degree of segmental mixing of the blocks with the respective phases is ev…

Materials sciencePolymers and PlasticsOrganic ChemistryDynamic mechanical analysisStyrenechemistry.chemical_compoundchemistryPhenylenePolymer chemistryMaterials ChemistryCopolymerPolystyreneAcrylonitrileMethyl methacrylateGlass transitionPolymer
researchProduct

Rheology of a Lower Critical Solution Temperature Binary Polymer Blend in the Homogeneous, Phase-Separated, and Transitional Regimes

1996

Small amplitude oscillatory shear rheology is employed in order to investigate the linear viscoelastic behavior of the lower critical solution temperature blend polystyrene/poly(vinyl methyl ether), PS/PVME, as a function of temperature and composition. At low temperatures, where the mixture is homogeneous, the dependence of the zero shear viscosity (η0) on concentration is measured and is well-described by means of a new mixing rule, based on surface fractions instead of volume fractions. Shift factors from time-temperature superposition (TTS) exhibit a Williams−Landel−Ferry (WLF) behavior. As the macrophase separation temperature is approached (the phase diagram being established by turbi…

Materials sciencePolymers and PlasticsOrganic ChemistryThermodynamicsDynamic mechanical analysisLower critical solution temperatureViscoelasticityInorganic ChemistryViscosityRheologyPhase (matter)Polymer chemistryMaterials ChemistryPolymer blendPhase diagramMacromolecules
researchProduct

An Innovative Treatment Based on Sodium Citrate for Improving the Mechanical Performances of Flax Fiber Reinforced Composites

2021

The goal of this paper is to evaluate the effectiveness of a cost-effective and eco-friendly treatment based on the use of sodium citrate (Na3C6H5O7) on the mechanical properties of flax fiber reinforced composites. To this scope, flax fibers were soaked in mildly alkaline solutions of the sodium salt at different weight concentration (i.e., 5%, 10% and 20%) for 120 h at 25 °C. The modifications on fibers surface induced by the proposed treatment were evaluated through Fourier transform infrared analysis (FTIR), whereas scanning electron microscope (SEM) and helium pycnometer were used to obtain useful information about composites morphology. The effect of the concentration of the treating …

Materials sciencePolymers and PlasticsScanning electron microscopeflaxchemical treatmentCharpy impact test02 engineering and technologymechanical properties010402 general chemistrysodium citrate01 natural sciencesArticlefiber–matrix adhesionlcsh:QD241-441chemistry.chemical_compoundnatural fiberslcsh:Organic chemistryFlexural strengthUltimate tensile strengthSodium citrateComposite materialFourier transform infrared spectroscopyGeneral ChemistryDynamic mechanical analysis021001 nanoscience & nanotechnology0104 chemical sciencesChemical treatment Fiber-matrix adhesion Flax Mechanical properties Natural fibers Sodium citrateSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryVoid (composites)0210 nano-technologyPolymers
researchProduct