Search results for "Dynamic"

showing 10 items of 12329 documents

Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks

2020

A set of thermodynamic models is presented that, for the first time, allows partial melting equilibria to be calculated for metabasic rocks. The models consist of new activity–composition relations combined with end-member thermodynamic properties from the Holland & Powell dataset, version 6. They allow for forward modelling in the system Na (Formula presented.) O–CaO–K (Formula presented.) O–FeO–MgO–Al (Formula presented.) O (Formula presented.) –SiO (Formula presented.) –H (Formula presented.) O–TiO (Formula presented.) –Fe (Formula presented.) O (Formula presented.). In particular, new activity–composition relations are presented for silicate melt of broadly trondhjemitic–tonalitic compo…

010504 meteorology & atmospheric sciencesPartial meltingMineralogyThermodynamicsGeologyComposition (combinatorics)010502 geochemistry & geophysics01 natural sciencesSilicatechemistry.chemical_compoundchemistryGeochemistry and PetrologyTetrahedronGeologyMixing (physics)0105 earth and related environmental sciencesSolid solutionJournal of Metamorphic Geology
researchProduct

The ~2730 Ma onset of the Neoarchean Yilgarn Orogeny

2017

The timing of the onset of an orogeny is commonly constrained indirectly, because early orogenic structures are rarely exposed, or are overprinted. Establishing the onset of an Archean orogeny is considerably more challenging, because of the more fragmented geological record and the general lack of consensus about Archean geodynamics. We combine existing tectono-stratigraphic data with new structural and geophysical datasets to establish the onset of the Neoarchean Yilgarn Orogeny (Yilgarn Craton, Western Australia). We show that the surface of the c. 2960–2750 Ma deep-marine Yilgarn greenstone sequence was uplifted, eroded and unconformably overlain by a c. 2730 Ma, syntectonic clastic seq…

010504 meteorology & atmospheric sciencesPlutonArcheanGeochemistryOrogenyYilgarn CratonGeodynamics010502 geochemistry & geophysics01 natural sciencesUnconformityGeophysicsGeochemistry and PetrologyClastic rockShear zonePetrologyGeology0105 earth and related environmental sciencesTectonics
researchProduct

An expanded model and application of the combined effect of crystal-size distribution and crystal shape on the relative viscosity of magmas

2018

International audience; This study examines the combined effect of crystal-size distributions (CSD) and crystal shape on the rheology of vesicle free magmatic suspensions and provides the first practical application of an empirical model to estimate the relative effect of crystal content and CSD's on the viscosity of magma directly from textural image analysis of natural rock samples in the form of a user-friendly texture-rheology spreadsheet calculator. We extend and apply established relationships between the maximum packing fraction ϕm of a crystal bearing suspension and both its rheological properties and the polydispersity γ of a CSD. By using analogue rotational rheometric experiments…

010504 meteorology & atmospheric sciencesRelative viscosityDispersityThermodynamicsMagma rheologyCrystal size distribution010502 geochemistry & geophysicsAtomic packing factor01 natural sciencesCrystalViscosityGeophysicsRheologyGeochemistry and PetrologyMagma[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologySuspension (vehicle)GeologyCrystal shape0105 earth and related environmental sciences
researchProduct

2D Hydro-Mechanical-Chemical Modeling of (De)hydration Reactions in Deforming Heterogeneous Rock: The Periclase-Brucite Model Reaction

2020

Deformation at tectonic plate boundaries involves coupling between rock deformation, fluid flow, and metamorphic reactions, but quantifying this coupling is still elusive. We present a new two-dimensional hydro-mechanical-chemical numerical model and investigate the coupling between heterogeneous rock deformation and metamorphic (de)hydration reactions. We consider linear viscous compressible and power-law viscous shear deformation. Fluid flow follows Darcy's law with a Kozeny-Carman type permeability. We consider a closed isothermal system and the reversible (de)hydration reaction: periclase and water yields brucite. Fluid pressure within a circular or elliptical inclusion is initially bel…

010504 meteorology & atmospheric sciencesShear zoneChemical process modelingMetamorphic rockThermodynamicsNumerical simulationengineering.materialDeformation (meteorology)010502 geochemistry & geophysics01 natural sciencesPhysics::GeophysicsPhysics::Fluid DynamicsGeochemistry and PetrologyFluid dynamicsCoupling (piping)Brucite-Periclase reaction0105 earth and related environmental sciencesBruciteReaction-induced weakeningGeophysics13. Climate actionengineeringHydro-Mechanical-Chemical modelPericlaseShear zoneGeologyRock deformation coupled to reactions
researchProduct

X-ray flare oscillations track plasma sloshing along star-disk magnetic tubes in Orion star-forming region

2018

Pulsing X-ray emission tracks the plasma echo traveling in an extremely long magnetic tube that flares in an Orion Pre-Main Sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (~20%) long-period (~3 hours) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer (ACIS) on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single l…

010504 meteorology & atmospheric sciencesSlosh dynamicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsStar (graph theory)01 natural scienceslaw.inventionlaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesstars: coronaePhysicsstars: formationTrack (disk drive)X-rayAstronomy and AstrophysicsPlasmaAstronomy and AstrophysicAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physicsstars: flareAstrophysics::Earth and Planetary AstrophysicsFlare
researchProduct

Testing the use of an image-based technique to measure gully erosion at Sparacia experimental area

2016

The first part of this investigation was aimed at testing the use of a three-dimensional (3D) Digital Terrain Model (DTM) and a quasi-tridimensional (2.5D) Digital Elevation Model (DEM) obtained by a large series of oblique images of eroded channels taken from consumer un-calibrated and non-metric cameras. For two closed earth channels having a different sinuosity the ground measurement of some cross-sections by a profilometer (P) was carried out. The real volume of each channel was also measured by waterproofing it by a plastic film and filling it with a known volume of water. The comparison among the three methods (3D, 2.5D and P) pointed out that a limited underestimation of the total vo…

010504 meteorology & atmospheric sciencesSoil scienceChannelized04 agricultural and veterinary sciencesSinuosity01 natural sciencesVolume (thermodynamics)040103 agronomy & agricultureErosion0401 agriculture forestry and fisheriesProfilometerEmpirical relationshipDigital elevation modelGeology0105 earth and related environmental sciencesWater Science and TechnologyRemote sensingCommunication channelHydrological Processes
researchProduct

Slow-Mode Magnetoacoustic Waves in Coronal Loops

2021

Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements of hot emission lines, thus also often called "SUMER" oscillations. They were mainly interpreted as global (or fundamental mode) standing slow magnetoacoustic waves. In addition, increasing evidence has suggested that the decaying harmonic type of pulsations detected in light curves of solar and stellar flares are likely caused by standing slow-mode waves. The study of slow magnetoacoustic waves in coronal loops has become a topic of particular…

010504 meteorology & atmospheric sciencesSolar activityFOS: Physical sciencesSolar corona01 natural sciencesStanding wave0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesCoronal seismologyPhysicsOscillationOscillations and wavesAstronomy and AstrophysicsCoronal loopLight curveThermal conductionCoronal loopsComputational physicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.

2021

Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…

010504 meteorology & atmospheric sciencesSpace weather01 natural scienceslaw.inventionDIMMINGSPhysics - Space PhysicslawRECONNECTIONCoronal mass ejectionQB Astronomy010303 astronomy & astrophysicsCoronagraphQCMISSIONQBSTREAMERSUN3rd-DASLow-coronal signaturesMagnetic StormsAstrophysics - Solar and Stellar AstrophysicsMagnetic stormsPhysical SciencesCURRENT SHEETSpace WeatherGeologyCoronal Mass EjectionsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreSpace weatherSOLAR-WIND HELIUMMAGNETIC CLOUDSFOS: Physical sciencesSolar cycle 24Astronomy & AstrophysicsArticleCurrent sheet0103 physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGeomagnetic stormScience & TechnologyAstronomyAstronomy and AstrophysicsSpace Physics (physics.space-ph)EVOLUTIONEarth's magnetic fieldQC Physics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Low-Coronal SignaturesCoronal mass ejectionsMAGNETOHYDRODYNAMIC MODELSInterplanetary spaceflightSpace science reviews
researchProduct

Effect of strain rate cycling on microstructures and crystallographic preferred orientation during high-temperature creep

2016

Strain rate histories and strain magnitude are two crucial factors governing the evolution of dynamic recrystallized grain size and crystallographic preferred orientation (CPO) in rocks and ice masses. To understand the effect of cyclic variations in strain rate or non-steady-state deformation, we conducted two-dimensional, coaxial plane strain experiments with time-lapse observations from a fabric analyzer. There is a continuous reequilibration of microstructure and CPO development associated with constant and oscillating strain rate cycles. These can be correlated with c -axis small circle distributions, diagnostic of dynamic recrystallization involving new grain nucleation and grain boun…

010504 meteorology & atmospheric sciencesStrain (chemistry)NucleationGeologyStrain rate010502 geochemistry & geophysics01 natural sciencesGrain sizeCrystallographyCreepDynamic recrystallizationDeformation (engineering)Geology0105 earth and related environmental sciencesPlane stressGeology
researchProduct

2019

Abstract. The flow of fluids through porous media such as groundwater flow or magma migration is a key process in geological sciences. Flow is controlled by the permeability of the rock; thus, an accurate determination and prediction of its value is of crucial importance. For this reason, permeability has been measured across different scales. As laboratory measurements exhibit a range of limitations, the numerical prediction of permeability at conditions where laboratory experiments struggle has become an important method to complement laboratory approaches. At high resolutions, this prediction becomes computationally very expensive, which makes it crucial to develop methods that maximize …

010504 meteorology & atmospheric sciencesStratigraphyFinite differencePaleontologySoil ScienceReynolds numberGeologyMechanics010502 geochemistry & geophysics01 natural sciencesStencilNon-Newtonian fluidPhysics::GeophysicsPhysics::Fluid DynamicsPermeability (earth sciences)symbols.namesakeGeophysicsGeochemistry and PetrologyFluid dynamicsNewtonian fluidsymbolsPorous mediumGeology0105 earth and related environmental sciencesEarth-Surface ProcessesSolid Earth
researchProduct