Search results for "Dynamical Systems"

showing 6 items of 476 documents

A proof of bistability for the dual futile cycle

2014

Abstract The multiple futile cycle is an important building block in networks of chemical reactions arising in molecular biology. A typical process which it describes is the addition of n phosphate groups to a protein. It can be modelled by a system of ordinary differential equations depending on parameters. The special case n = 2 is called the dual futile cycle. The main result of this paper is a proof that there are parameter values for which the system of ODE describing the dual futile cycle has two distinct stable stationary solutions. The proof is based on bifurcation theory and geometric singular perturbation theory. An important entity built of three coupled multiple futile cycles is…

Singular perturbationBistabilityFutile cycleMolecular Networks (q-bio.MN)Quantitative Biology::Molecular NetworksApplied MathematicsGeneral EngineeringOdeDynamical Systems (math.DS)General MedicineDual (category theory)Computational MathematicsBifurcation theoryMathematics - Classical Analysis and ODEsFOS: Biological sciencesOrdinary differential equationClassical Analysis and ODEs (math.CA)FOS: MathematicsApplied mathematicsQuantitative Biology - Molecular NetworksMathematics - Dynamical SystemsSpecial caseGeneral Economics Econometrics and FinanceAnalysisMathematicsNonlinear Analysis: Real World Applications
researchProduct

Cycles in continuous and discrete dynamical systems : computations, computer-assisted proofs, and computer experiments

2009

The present work is devoted to calculation of periodic solutions and bifurcation research in quadratic systems, Lienard system, and non-unimodal one-dimensional discrete maps using modern computational capabilities and symbolic computing packages.In the first chapter the problem of Academician A.N. Kolmogorov on localization and modeling of cycles of quadratic systems is considered. For the investigation of small limit cycles (so-called local 16th Hilbert’s problem) the method of calculation of Lyapunov quantities (or Poincaré-Lyapunov constants) is used. To calculate symbolic expressions for the Lyapunov quantities the Lyapunov method to the case of non-analytical systems was generalized. …

Lyapunov quantitiesmallintaminenLienard systemPLLlimit cyclessymbolinen laskentabifurcationdynaamiset järjestelmätKolmogorov's problemdynamical systemsmatemaattiset mallitphase locked loopstietojenkäsittely
researchProduct

Models of the population playing the Rock-Paper-Scissors game

2018

We consider discrete dynamical systems coming from the models of evolution of populations playing rock - paper - scissors game . Asymptotic behaviour of trajectories of these systems is described, occurrence of the Neimark-Sacker bifurcation and nonexistence of time averages are proved.

education.field_of_studyGame mechanicsAsymptotic behaviour of trajectoriesDynamical systems theoryComputer scienceApplied Mathematics010102 general mathematicsPopulation01 natural sciences010101 applied mathematicstime averageDiscrete Mathematics and CombinatoricsApplied mathematicsTime averagerock-paper-scissors game0101 mathematicseducationVideo game designBifurcationDiscrete and Continuous Dynamical Systems-Series B
researchProduct

Game-Theoretic Approach to Hölder Regularity for PDEs Involving Eigenvalues of the Hessian

2021

AbstractWe prove a local Hölder estimate for any exponent $0<\delta <\frac {1}{2}$ 0 < δ < 1 2 for solutions of the dynamic programming principle $$ \begin{array}{@{}rcl@{}} u^{\varepsilon} (x) = \sum\limits_{j=1}^{n} \alpha_{j} \underset{\dim(S)=j}{\inf} \underset{|v|=1}{\underset{v\in S}{\sup}} \frac{u^{\varepsilon} (x + \varepsilon v) + u^{\varepsilon} (x - \varepsilon v)}{2} \end{array} $$ u ε ( x ) = ∑ j = 1 n α j inf dim ( S ) = j sup v ∈ S | v | = 1 u ε ( x + ε v ) + u ε ( x − ε v ) 2 with α1,αn > 0 and α2,⋯ ,αn− 1 ≥ 0. The proof is based on a new coupling idea from game theory. As an application, we get the same regularity estimate for viscosity solutions of the PDE $…

viscosity solutionosittaisdifferentiaaliyhtälötMathematics::Functional AnalysisStatistics::Theory91A05 91A15 35D40 35B65Mathematics::Dynamical Systemsholder estimateMathematics::Analysis of PDEsmatemaattinen optimointifully nonlinear PDEsdynamic programming principleMathematics - Analysis of PDEsMathematics::ProbabilityFOS: Mathematicspeliteoriaeigenvalue of the HessianAnalysisAnalysis of PDEs (math.AP)estimointi
researchProduct

Dynamics, Operator Theory, and Infinite Holomorphy

2014

The works on linear dynamics in the last two decades show that many, even quite natural, linear dynamical systems exhibit wild behaviour. Linear chaos and hypercyclicity have been at the crossroads of several areas of mathematics. More recently, fascinating new connections have started to be explored: operators on spaces of analytic functions, semigroups and applications to partial differential equations, complex dynamics, and ergodic theory. Related aspects of functional analysis are the study of linear operators on Banach spaces by using geometric, topological, and algebraic techniques, the works on the geometry of Banach spaces and Banach algebras, and the study of the geometry of a Bana…

Mathematics::Functional AnalysisEditorialHypercyclicityDynamical systemsLinear dynamicsLinear chaos
researchProduct

Language in Complexity. The Emerging Meaning

2017

This contributed volume explores the achievements gained and the remaining puzzling questions by applying dynamical systems theory to the linguistic inquiry. In particular the book is divided into three parts, each one addressing of the following topics: a) Facing complexity in the right way: mathematics and complexity; b) Complexity and theory of language; c) From empirical observation to formal models: investigations of specifici linguistic phenomena, like enunciation, deixis, or the meaning of the metaphorical phrases.

Complex Systems Language Activity Dynamical Systems Emergence AttractorsSettore M-FIL/05 - Filosofia E Teoria Dei Linguaggi
researchProduct