Search results for "Dynein"

showing 10 items of 26 documents

Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle

2002

Deaf-blindness in three distinct genetic forms of Usher type I syndrome (USH1) is caused by defects in myosin VIIa, harmonin and cadherin 23. Despite being critical for hearing, the functions of these proteins in the inner ear remain elusive. Here we show that harmonin, a PDZ domain-containing protein, and cadherin 23 are both present in the growing stereocilia and that they bind to each other. Moreover, we demonstrate that harmonin b is an F-actin-bundling protein, which is thus likely to anchor cadherin 23 to the stereocilia microfilaments, thereby identifying a novel anchorage mode of the cadherins to the actin cytoskeleton. Moreover, harmonin b interacts directly with myosin VIIa, and i…

DNA ComplementaryCadherin Related ProteinsCell Cycle Proteinsmacromolecular substancesMyosinsBiologyTransfectionMicrofilamentGeneral Biochemistry Genetics and Molecular BiologyCell LineMiceCDH23Two-Hybrid System TechniquesHair Cells Auditoryotorhinolaryngologic diseasesmedicineAnimalsHumansProtein IsoformsRats WistarMolecular BiologyActinAdaptor Proteins Signal TransducingGene LibraryGeneral Immunology and MicrobiologyCadherinGeneral NeuroscienceStereociliaDyneinsCell DifferentiationArticlesCadherinsActin cytoskeletonActinsProtein Structure TertiaryRatsCell biologyCytoskeletal ProteinsMicroscopy Electronmedicine.anatomical_structureMicroscopy FluorescenceMyosin VIIasense organsCarrier ProteinsTip linkPCDH15HeLa CellsProtein BindingThe EMBO Journal
researchProduct

A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth

2008

The planar polarity and staircase-like pattern of the hair bundle are essential to the mechanoelectrical transduction function of inner ear sensory cells. Mutations in genes encoding myosin VIIa, harmonin, cadherin 23,protocadherin 15 or sans cause Usher syndrome type I (USH1, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa leading to blindness) in humans and hair bundle disorganization in mice. Whether the USH1 proteins are involved in common hair bundle morphogenetic processes is unknown. Here, we show that mouse models for the five USH1 genetic forms share hair bundle morphological defects. Hair bundle fragmentation and misorientation (25-52° mean ki…

Stereocilia (inner ear)Cadherin Related ProteinsProtocadherinCell Cycle ProteinsNerve Tissue ProteinsMyosinsBiologyMechanotransduction CellularMiceCDH23Pregnancyotorhinolaryngologic diseasesmedicineAnimalsHumansInner earProtein PrecursorsMolecular BiologyActinMice KnockoutCadherinDyneinsAnatomyCadherinsMice Mutant StrainsCochleaCell biologyCytoskeletal ProteinsDisease Models AnimalPhenotypemedicine.anatomical_structureMyosin VIIaMicroscopy Electron ScanningFemalesense organsCarrier ProteinsUsher SyndromesTip linkPCDH15Developmental BiologyDevelopment
researchProduct

Differential Distribution of Harmonin Isoforms and Their Possible Role in Usher-1 Protein Complexes in Mammalian Photoreceptor Cells

2003

PURPOSE. Human Usher syndrome is the most common form of combined deafness and blindness. Usher type I (USH1), the most severe form, is characterized by profound congenital deafness, constant vestibular dysfunction, and prepubertal onset retinitis pigmentosa. Previous studies have shown that the USH1-proteins myosin VIIa, harmonin, and cadherin 23 interact and form a functional network during hair cell differentiation in the inner ear. The purpose of the present study was to analyze the molecular and cellular functions of these USH1 proteins in the mammalian retina. METHODS. Antibodies to USH1 proteins were generated and used in Western blot analysis of subcellular photoreceptor fractions a…

Gene isoformUsher syndromeBlotting WesternSynaptophysinCell Cycle ProteinsMyosinsBiologyPhotoreceptor cellMiceRetinitis pigmentosaotorhinolaryngologic diseasesmedicineAnimalsProtein IsoformsRats WistarFluorescent Antibody Technique IndirectMicroscopy ImmunoelectronCytoskeletonGeneticsRetinaHair cell differentiationReverse Transcriptase Polymerase Chain ReactionCadherinDyneinsCadherinsmedicine.diseaseeye diseasesRatsCell biologyMice Inbred C57BLCytoskeletal Proteinsmedicine.anatomical_structureMicroscopy FluorescenceMyosin VIIasense organsCarrier ProteinsPhotoreceptor Cells VertebrateSubcellular FractionsInvestigative Opthalmology & Visual Science
researchProduct

Identification of three novel mutations in the MYO7A gene

1999

Three new mutations in the myosin VIIA gene involved in the pathogenesis of Usher syndrome type Ib are reported. These mutations are K1080X in exon 25, E1170K in exon 28, and Y1719C in exon 37. It is presumed that these mutations are involved in the Usher syndrome Ib phenotype. Hum Mutat 14:181, 1999. Copyright 1999 Wiley-Liss, Inc.

MaleMYO7AHearing Loss SensorineuralUsher syndromeMyosinsBiologymedicine.disease_causeExonRetinitis pigmentosaMyosinotorhinolaryngologic diseasesGeneticsmedicineHumansGenePolymorphism Single-Stranded ConformationalGenetics (clinical)GeneticsMutationBase SequenceChromosomes Human Pair 11fungiDyneinsSyndromemedicine.diseasePhenotypeeye diseasesPedigreePhenotypeMyosin VIIaMutationFemaleRetinitis PigmentosaHuman Mutation
researchProduct

CeRNA bioinformatic analysis on human telomerase

2013

Messenger RNA (mRNA) translation efficiency is regulated by microRNAs. Each microRNA is able to regulate the translation of multiple mRNAs and each mRNA is regulated by multiple microRNAs. Thus, cellular mRNAs pool competed for microRNAs pool and viceversa. The regulatory network between mRNAs and microRNAs can be studied in the perspective of Competing Endogenous RNAs or ceRNAs. Here it is presented a bioinformatic study on ceRNAs for human telomerase (hTERT). Several genes potentially involved in the regulatory network of hTERT have been harvested by this study. hTERT is essential for the telomeres integrity. Telomere dysfunctions have been widely reported to be involved in Ageing, Cancer…

Settore BIO/18 - GeneticahTERT telomerase PTEN dynein ceRNASettore BIO/11 - Biologia MolecolareSettore MED/13 - Endocrinologia
researchProduct

Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells

2000

The transport of the photopigment rhodopsin from the inner segment to the photosensitive outer segment of vertebrate photoreceptor cells has been one of the main remaining mysteries in photoreceptor cell biology. Because of the lack of any direct evidence for the pathway through the photoreceptor cilium, alternative extracellular pathways have been proposed. Our primary aim in the present study was to resolve rhodopsin trafficking from the inner to the outer segment. We demonstrate, predominantly by high-sensitive immunoelectron microscopy, that rhodopsin is also densely packed in the membrane of the photoreceptor connecting cilium. Present prominent labeling of rhodopsin in the ciliary mem…

RhodopsinOpsingenetic structuresPhotoreceptor Connecting CiliumImmunoblottingMolecular Sequence Datamacromolecular substancesMyosinsBiologyPhotoreceptor cellRats Sprague-DawleyMiceRetinal Rod Photoreceptor CellsStructural BiologymedicineAnimalsHumansPhotopigmentAmino Acid SequenceCiliaMicroscopy ImmunoelectronCiliary membraneCiliumRod OpsinsAntibodies MonoclonalDyneinsBiological TransportCell BiologyMiddle AgedRod Cell Outer SegmentActin cytoskeletonImmunohistochemistryActinseye diseasesRatsCell biologyMice Inbred C57BLmedicine.anatomical_structureRhodopsinMyosin VIIabiology.proteinCattleFemalesense organsRetinitis PigmentosaCell Motility and the Cytoskeleton
researchProduct

X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

2017

By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-li…

MaleCytoplasmProtein FoldingAxoneme[SDV]Life Sciences [q-bio][SDV.GEN] Life Sciences [q-bio]/Genetics[SDV.MHEP.PSR]Life Sciences [q-bio]/Human health and pathology/Pulmonology and respiratory tractouterGenes X-LinkedChilddefectsPhylogenyZebrafisharmsSequence DeletionvariantsIntracellular Signaling Peptides and ProteinsGenetic Diseases X-LinkedPedigreeMultidisciplinary Sciences[SDV] Life Sciences [q-bio]motilityChild PreschoolMicrotubule ProteinsSperm MotilityScience & Technology - Other TopicsFemaleAdultAdolescentinnerUK10K Rare Groupr2tp complexof-function mutationsArticleMicroscopy Electron TransmissionMD MultidisciplinaryExome SequencingAnimalsHumansPoint MutationCiliaHSP90 Heat-Shock Proteins[SDV.GEN]Life Sciences [q-bio]/GeneticsScience & TechnologyKartagener SyndromeInfant NewbornAxonemal DyneinsDisease Models AnimalHEK293 Cells[SDV.MHEP.PSR] Life Sciences [q-bio]/Human health and pathology/Pulmonology and respiratory tractidentifies mutationsproteinApoptosis Regulatory ProteinsSequence AlignmentMolecular ChaperonesNature Communications
researchProduct

Huntingtin mediates dendritic transport of β-actin mRNA in rat neurons

2011

Transport of mRNAs to diverse neuronal locations via RNA granules serves an important function in regulating protein synthesis within restricted sub-cellular domains. We recently detected the Huntington's disease protein huntingtin (Htt) in dendritic RNA granules; however, the functional significance of this localization is not known. Here we report that Htt and the huntingtin-associated protein 1 (HAP1) are co-localized with the microtubule motor proteins, the KIF5A kinesin and dynein, during dendritic transport of β-actin mRNA. Live cell imaging demonstrated that β-actin mRNA is associated with Htt, HAP1, and dynein intermediate chain in cultured neurons. Reduction in the levels of Htt, H…

congenital hereditary and neonatal diseases and abnormalitiesHuntingtinDyneinModels NeurologicalBiological Transport ActiveKinesinsRNA-binding proteinNerve Tissue Proteinsmacromolecular substancesBiologyCytoplasmic GranulesMicrotubulesArticle03 medical and health sciences0302 clinical medicineMicrotubulemental disordersProtein biosynthesisMRNA transportAnimalsRNA MessengerRNA Small InterferingRats WistarCells Cultured030304 developmental biologyNeurons0303 health sciencesHuntingtin ProteinMultidisciplinaryMolecular Motor ProteinsBrainDyneinsNuclear ProteinsRNA-Binding ProteinsDendritesActinsCell biologynervous system diseasesRatsDendritic transportnervous systemGene Knockdown TechniquesKinesinFemale030217 neurology & neurosurgerySignal TransductionScientific Reports
researchProduct

Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine.

2012

Persistent respiratory syncytial virus (RSV) infections have been associated with the exacerbation of chronic inflammatory diseases, including chronic obstructive pulmonary disease (COPD). This virus infects the respiratory epithelium, leading to chronic inflammation, and induces the release of mucins and the loss of cilia activity, two factors that determine mucus clearance and the increase in sputum volume. These alterations involve reactive oxygen species-dependent mechanisms. The antioxidant N-acetylcysteine (NAC) has proven useful in the management of COPD, reducing symptoms, exacerbations, and accelerated lung function decline. NAC inhibits RSV infection and mucin release in human A54…

Viral DiseasesPulmonologyChronic Obstructive Pulmonary Diseaseslcsh:MedicineMucin 5ACVirus ReplicationAcetylcysteinePulmonary Disease Chronic ObstructiveTubulinRespiratory systemlcsh:ScienceCells CulturedMultidisciplinaryInterleukin-13Microscopy VideoCell DifferentiationForkhead Transcription FactorsFree Radical Scavengersrespiratory systemHost-Pathogen InteractionLower Respiratory Tract InfectionsInfectious Diseasesmedicine.anatomical_structureInterleukin 13Medicinemedicine.symptomResearch Articlemedicine.drugDrugs and DevicesInflammationBronchiRespiratory Syncytial Virus InfectionsBiologyMicrobiologyAntiviral AgentsUpper Respiratory Tract InfectionsmedicineHumansCiliaBiologyInflammationRespiratory Syncytial Virus InfectionA549 cellMucinlcsh:RImmunityEpithelial CellsAxonemal DyneinsEpitheliumAcetylcysteineGene Expression RegulationRespiratory Syncytial Virus HumanRespiratory InfectionsImmunologyRespiratory epitheliumlcsh:QPLoS ONE
researchProduct

Exploitation of Microtubule Cytoskeleton and Dynein during Parvoviral Traffic toward the Nucleus

2003

ABSTRACT Canine parvovirus (CPV), a model virus for the study of parvoviral entry, enters host cells by receptor-mediated endocytosis, escapes from endosomal vesicles to the cytosol, and then replicates in the nucleus. We examined the role of the microtubule (MT)-mediated cytoplasmic trafficking of viral particles toward the nucleus. Immunofluorescence and immunoelectron microscopy showed that capsids were transported through the cytoplasm into the nucleus after cytoplasmic microinjection but that in the presence of MT-depolymerizing agents, viral capsids were unable to reach the nucleus. The nuclear accumulation of capsids was also reduced by microinjection of an anti-dynein antibody. More…

Parvovirus CaninevirusesImmunoelectron microscopyImmunologyDyneinActive Transport Cell Nucleusmacromolecular substancesMicrotubulesMicrobiologyMotor proteinCapsidCytosolMicrotubuleVirologymedicineAnimalsCytoskeletonCytoskeletonCell NucleusbiologyDyneinsbiochemical phenomena metabolism and nutritionVirus-Cell InteractionsCell biologyMicroscopy ElectronTubulinmedicine.anatomical_structureCytoplasmInsect ScienceCatsbiology.proteinNucleusJournal of Virology
researchProduct