Search results for "EEG"

showing 10 items of 313 documents

Applying Hilbert-Huang transform to mismatch negativity

2009

signaalinkäsittelyHilbert-Huang -muunnosdysleksiaADHDEEG
researchProduct

Extraction of event-related potentials from electroencephalography data

2009

signaalinkäsittelydenoisingelektrofysiologiaElectroencephalographyEEGEvoked potentialsevent-related potentialssignal processingERPherätepotentiaalit
researchProduct

Alleviating Class Imbalance Problem in Automatic Sleep Stage Classification

2022

For real-world automatic sleep-stage classification tasks, various existing deep learning-based models are biased toward the majority with a high proportion. Because of the unique sleep structure, most of the current polysomnography (PSG) datasets suffer an inherent class imbalance problem (CIP), in which the number of each sleep stage is severely unequal. In this study, we first define the class imbalance factor (CIF) to describe the level of CIP quantitatively. Afterward, we propose two balancing methods to alleviate this problem from the dataset quantity and the relationship between the class distribution and the applied model, respectively. The first one is to employ the data augmentati…

sleep-stage classificationunitutkimusdeep neural networksignaalianalyysisyväoppiminenneuroverkotdata augmentation (DA)uni (lepotila)koneoppiminenClass imbalance problem (CIP)network connectionEEGElectrical and Electronic Engineeringgenerative adversarial network (GAN)InstrumentationIEEE Transactions on Instrumentation and Measurement
researchProduct

Measuring the Task Induced Oscillatory Brain Activity Using Tensor Decomposition

2019

The characterization of dynamic electrophysiological brain activity, which form and dissolve in order to support ongoing cognitive function, is one of the most important goals in neuroscience. Here, we introduce a method with tensor decomposition for measuring the task-induced oscillations in the human brain using electroencephalography (EEG). The time frequency representation of source-reconstructed singletrail EEG data constructed a third-order tensor with three factors of time ∗ trails, frequency and source points. We then used a non-negative Canonical Polyadic decomposition (NCPD) to identify the temporal, spectral and spatial changes in electrophysiological brain activity. We validate …

source localizationoscillatorsBrain activity and meditationComputer scienceneural oscillationsPhysics::Medical Physics02 engineering and technologyElectroencephalographyTask (project management)03 medical and health sciencestensor decomposition0302 clinical medicineTensor (intrinsic definition)0202 electrical engineering electronic engineering information engineeringmedicineEEGTensorta515ta113Quantitative Biology::Neurons and Cognitionmedicine.diagnostic_testbusiness.industrybrain modelingPattern recognitionHuman brainoskillaattoritdata modelsElectrophysiologymedicine.anatomical_structuretask analysis020201 artificial intelligence & image processingArtificial intelligencebusinesstietomallitelectroencephalography030217 neurology & neurosurgeryICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
researchProduct

Spatio-temporal Dynamical Analysis of Brain Activity during Mental Fatigue Process

2021

Mental fatigue is a common phenomenon with implicit and multidimensional properties. It brings dynamic changes of functional brain networks. However, the challenging problem of false positives appears when the connectivity is estimated by Electroencephalography (EEG). In this paper, we propose a novel framework based on spatial clustering to explore the sources of mental fatigue and functional activity changes caused by them. To suppress the false positive observations, spatial clustering is implemented in brain networks. The nodes extracted by spatial clustering are registered back to functional magnetic resonance imaging (fMRI) source space to determined the sources of mental fatigue. The…

spatiotemporaalinen analyysisignaalinkäsittelyaivosähkökäyräväsymysfunctional connectivityhermoverkot (biologia)signaalianalyysielektroenkefalografiamental fatiguespatial clusteringkuvantaminentoiminnallinen magneettikuvausspatiotemporal imagingklusterianalyysiEEGhenkinen väsymys
researchProduct

Binaurālo pukstu ietekme uz EEG un stājas stabilitāti

2016

Pētījums attiecas uz aktuālu klīniskās fizioloģijas un neirozinātnes problēmu, kura ir saistīta ar dažādu eksogēnu stimulu spēju ietekmēt gan cilvēka smadzeņu darbību, gan stājas stabilitāti. Pētījums veikts ar mērķi noskaidrot binaurālo pukstu (BP) stimulācijas ietekmi uz pieaugušu jaunu cilvēku nomoda elektroencefalogrammu (EEG) un stājas stabilitātes parametriem, kā arī savstarpēji salīdzinoši novērtēt vairākus objektīvus un subjektīvus BP sensitivitātes kritērijus. Binaurālo pukstu tūlītējās, daudzbusīgās ietekmes kopaina ir īpatnēja katram indivīdam, līdz ar to – indivīda binaurālo pukstu jutības (sensitivitātes) vērtējumā ir jāizmanto vairāku fizioloģisko reakciju spilgtumu raksturojo…

stabilometrijaelektroencefalogramma (EEG)stājas stabilitāteBioloģijabinaurālie puksti (BP)
researchProduct

Load-dependent alpha suppression is related to working memory capacity for numbers

2022

Alpha suppression is proposed to reflect a surge in cortical excitability to enhance stimulus processing in working memory. The attenuated state of alpha might reflect the prioritisation of behaviourally relevant information, making it a proxy for working memory functioning. Despite the growing interest in utilising the advancement of brain-based measures to evaluate individuals’ cognitive processes, there was a lack of consistent evidence on the relationship between alpha suppression and working memory performance. To investigate whether interindividual differences in alpha suppression might be related to variability in working memory capacity, we recorded participants’ electroencephalogra…

suorituskykyBrain Mappingalphaneural oscillationskuormitusGeneral NeuroscienceBrainElectroencephalographytyömuistikognitiiviset prosessitaivokuoriMemory Short-TermParietal LobeHumansmuistaminenelectroencephalography (EEG)EEGaivotutkimusNeurology (clinical)aivotMolecular Biologymuisti (kognitio)Developmental BiologyBrain Research
researchProduct

The prediction of three driving quality states of simulated driving by psychophysiological variables with sleep-deprived subjects

2005

sykeväsymysheart rateajokykydriving performanceEEGdriver fatiguesleepinesseye blinkpsykofysiologia
researchProduct

Exploiting ongoing EEG with multilinear partial least squares during free-listening to music

2016

During real-world experiences, determining the stimulus-relevant brain activity is excitingly attractive and is very challenging, particularly in electroencephalography. Here, spectrograms of ongoing electroencephalogram (EEG) of one participant constructed a third-order tensor with three factors of time, frequency and space; and the stimulus data consisting of acoustical features derived from the naturalistic and continuous music formulated a matrix with two factors of time and the number of features. Thus, the multilinear partial least squares (PLS) conforming to the canonical polyadic (CP) model was performed on the tensor and the matrix for decomposing the ongoing EEG. Consequently, we …

ta113Multilinear mapmedicine.diagnostic_testBrain activity and meditationSpeech recognition02 engineering and technologyElectroencephalographyta3112Matrix decomposition03 medical and health sciences0302 clinical medicinetensor decompositionFrequency domainPartial least squares regression0202 electrical engineering electronic engineering information engineeringmedicineSpectrogramOngoing EEG020201 artificial intelligence & image processingmusicTime domain030217 neurology & neurosurgerymultilinear partial least squaresMathematics
researchProduct

Deriving electrophysiological brain network connectivity via tensor component analysis during freely listening to music

2020

Recent studies show that the dynamics of electrophysiological functional connectivity is attracting more and more interest since it is considered as a better representation of functional brain networks than static network analysis. It is believed that the dynamic electrophysiological brain networks with specific frequency modes, transiently form and dissolve to support ongoing cognitive function during continuous task performance. Here, we propose a novel method based on tensor component analysis (TCA), to characterize the spatial, temporal, and spectral signatures of dynamic electrophysiological brain networks in electroencephalography (EEG) data recorded during free music-listening. A thr…

tensor decompositionQuantitative Biology::Neurons and CognitionComputer Science::Soundsignaalinkäsittelyfrequency-specific brain connectivitymusiikkifreely listening to musicoscillatory coherenceelectroencephalography (EEG)EEGkuunteleminen
researchProduct