Search results for "ELASTIC SCATTERING"
showing 10 items of 735 documents
New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei
2012
We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new $A_n$ measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.
Polarization in p-p and $$\bar p - p$$ elastic scatteringelastic scattering
1970
On the annual modulation signal in dark matter direct detection
2012
We derive constraints on the annual modulation signal in Dark Matter (DM) direct detection experiments in terms of the unmodulated event rate. A general bound independent of the details of DM distribution follows from the assumption that the motion of the earth around the sun is the only source of time variation. The bound is valid for a very general class of particle physics models and also holds in the presence of an unknown unmodulated background. More stringent bounds are obtained, if modest assumptions on symmetry properties of the DM halo are adopted. We illustrate the bounds by applying them to the annual modulation signals reported by the DAMA and CoGeNT experiments in the framework…
Effect of neutron halos on excited states of nuclei
2011
The differential cross sections of the inelastic scattering leading to the excitation of short-lived states in the stable ${}^{13}$C and ${}^{9}$Be nuclei as well as the radioactive ${}^{11}$Be nucleus have been analyzed. Signatures of neutron halos in the excited states located close to the neutron emission thresholds have been investigated by applying a recently developed modified diffraction model. The abnormally large rms radius was identified for the 3.089-MeV $1/{2}^{+}$ state of ${}^{13}$C. Significantly enlarged diffraction radii were found for the 1.68-MeV $1/{2}^{+}$ and the 3.05-MeV $5/{2}^{+}$ states of ${}^{9}$Be. The analysis of the diffraction radii of the weakly bound radioa…
Accurate Determination of the Neutron Skin Thickness of Pb208 through Parity-Violation in Electron Scattering
2021
We report a precision measurement of the parity-violating asymmetry A_{PV} in the elastic scattering of longitudinally polarized electrons from ^{208}Pb. We measure A_{PV}=550±16(stat)±8(syst) parts per billion, leading to an extraction of the neutral weak form factor F_{W}(Q^{2}=0.00616 GeV^{2})=0.368±0.013. Combined with our previous measurement, the extracted neutron skin thickness is R_{n}-R_{p}=0.283±0.071 fm. The result also yields the first significant direct measurement of the interior weak density of ^{208}Pb: ρ_{W}^{0}=-0.0796±0.0036(exp)±0.0013(theo) fm^{-3} leading to the interior baryon density ρ_{b}^{0}=0.1480±0.0036(exp)±0.0013(theo) fm^{-3}. The measurement accurately co…
Three-body approach to proton-hydrogen charge exchange and elastic scattering
1999
The impact-parameter Faddeev approach to atomic three-body collisions which has been developed for, and successfully applied to, ion-atom scattering processes, has now been developed further by including, instead of the Coulomb potentials, the full two-particle off-shell Coulomb {ital T} matrices in all {open_quotes}triangle{close_quotes} contributions to the effective potentials. Results of calculations of proton-hydrogen collisions with only the ground states of the hydrogen retained in both the direct and the rearrangement channels are presented. Total and differential electron transfer, as well as differential elastic scattering cross sections, are obtained simultaneously in very good a…
Role of Levinson’s theorem in neutron-deuteron quartetS-wave scattering
1990
The real part of the phase shift for elastic neutron-deuteron scattering in the quartet {ital S} wave channel, as calculated with the exact three-body theory, assumes at threshold the value {pi} if normalized to zero at infinity; that is, it does not comply with the expectations raised by a naive application of Levinson's theorem since no bound state exists in this channel. A description of this situation on an equivalent two-body level via a potential, constructed by means of the Marchenko inverse scattering theory, necessitates the introduction of a fictitious bound state. This predominantly attractive, equivalent local potential can be related via supersymmetry to a strictly phase equiva…
Pygmy dipole resonance in 124Sn populated by inelastic scattering of 17O
2014
L. Pellegri et al. ; 5 pags. ; 6 figs. ; open access article under the CC BY license. Funded by SCOAP3
Estimating the two-particle $K$-matrix for multiple partial waves and decay channels from finite-volume energies
2017
An implementation of estimating the two-to-two $K$-matrix from finite-volume energies based on the L\"uscher formalism and involving a Hermitian matrix known as the "box matrix" is described. The method includes higher partial waves and multiple decay channels. Two fitting procedures for estimating the $K$-matrix parameters, which properly incorporate all statistical covariances, are discussed. Formulas and software for handling total spins up to $S=2$ and orbital angular momenta up to $L=6$ are obtained for total momenta in several directions. First tests involving $\rho$-meson decay to two pions include the $L=3$ and $L=5$ partial waves, and the contributions from these higher waves are f…
Measurement of the n-TOF beam profile with a micromegas detector
2004
A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the 6Li(n,[alpha])t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility. http://www.sciencedirect.com/science/artic…