Search results for "ELECTRON LOCALIZATION"
showing 6 items of 56 documents
Studies of Nature of Uncommon Bifurcated I–I···(I–M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals
2021
Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal–iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed …
Understanding the kinetic solvent effects on the 1,3-dipolar cycloaddition of benzonitrile N-oxide: a DFT study
2011
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, ISSN : 0894-3230, DOI : 10.1002/poc.1858, Issue : 7, Volume : 24, pp. 611 – 618, JUILLET 2011.
An Understanding of the Electrophilic/Nucleophilic Behavior of Electro-Deficient 2,3-Disubstituted 1,3-Butadienes in Polar Diels−Alder Reactions. A D…
2008
The electrophilic/nucleophilic behavior of dimethyl 2,3-dimethylenesuccinate 1, an electron-deficient 2,3-disubstituted 1,3-butadiene, in polar Diels-Alder reactions has been studied using DFT methods at the B3LYP/6-31G(d) level of theory. The electronic nature of bonding of the transition structures involved in the cycloaddition reactions of the diene 1 toward the nucleophilically activated dienophile 6 and the strong electrophilically activated dienophile 7 has been carefully examined within the natural bond orbital (NBO) and the topological analysis of the electron localization function (ELF) frameworks. Additionally, a study of the global electrophilicity pattern of the reagents at the …
Better understanding of the ring-cleavage process of cyanocyclopropyl anionic derivatives. A theoretical study based on the electron localization fun…
2005
[reaction: see text] Theoretical calculations at the B3LYP/6-31+G(d), MP2/6-31+G(d), and G3(MP2) levels have been carried out to understand the alternative reaction pathways (the cyclopropyl ring cleavage (RC) and the retrocycloaddition reaction (rCA)) of a constrained tricyanocyclopropyl anionic derivative. The more energetically favorable path is found to be the RC process, a formally "forbidden" rearrangement (Leiviers, M.; Tam, I.; Groves, K.; Leung, D.; Xie, Y.; Breslow, R. Org. Lett. 2003, 5, 19, 3407) yielding an allylic anion system via a concerted transition structure, in agreement with experimental outcomes. rCA is more energetically favorable along a two-stage mechanism, via an i…
Understanding the Influence of the Trifluoromethyl Group on the Selectivities of the [3+2] Cycloadditions of Thiocarbonyl S ‐methanides with α,β‐Unsa…
2020
Closer Investigation of the Kinetics and Mechanism of Spirovinylcyclopropyl Oxindole Reaction with 3Σ–g-O2 by Topological Approaches and Unraveling t…
2021
In this investigation at the MN15L/Def2-TZVP level of theory, we present computational evidence indicating that the reaction of 3Σ-g-O2 with spirovinylcyclopropyl oxindole (2) leads to a product called spiro-1,2-dioxolane (2) in its singlet state; this reaction occurs via a stepwise mechanism and its rate-determining step is catalyzed by iodine radicals, which promotes opening of the three-membered ring under dark conditions. The conversion of 2 to 1-benzylindoline-2,3-dione (3) and 2-vinyloxirane (4) takes place via a concerted and slightly asynchronous reaction. Both electron localization function and AIM topological analysis reveal that the step associated with the attack of the 3Σ-g-O2 …