Search results for "ELECTROWEAK INTERACTION"
showing 10 items of 358 documents
Elementary Goldstone Higgs boson and dark matter
2015
We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due to the embedding of the Yukawa and the electroweak gauge interactions that do not preserve the full SU(4) symmetry. At the one-loop order the top corrections dominate and align the vacuum in the direction where the Higgs is mostly a pseudo-Goldstone boson. Because of the perturbative and elementary nature of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson …
Reloading the Axion in a 3-3-1 setup
2020
We generalize the idea of the axion to an extended electroweak gauge symmetry setup. We propose a minimal axion extension of the Singer-Valle-Schechter (SVS) theory, in which the standard model fits in $\mathrm{SU(3)_L\otimes U(1)_X}$, the number of families results from anomaly cancellation, and the Peccei-Quinn (PQ) solution to the strong-CP problem is implemented. Neutrino masses arise from a type-I Dirac seesaw mechanism, suppressed by the ratio of SVS and PQ scales, suggesting the existence of new physics at a moderate SVS scale. Novel features include an enhanced axion coupling to photons when compared to the DFSZ axion, as well as flavour-changing axion couplings to quarks.
First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model
2015
We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled conformally to the Higgs sector as well as new fermions. We uncover the parameter space leading to a first order phase transition with(out) the Veltman conditions. We also discuss dark (matter) aspects of some of the models and compare with existing literature when appropriate. We observe that to accommodate both, a first order electroweak phase transition, and a phenomenologically viable dark matter …
Pinch Technique: Theory and Applications
2009
We review the theoretical foundations and the most important physical applications of the Pinch Technique (PT). This general method allows the construction of off-shell Green’s functions in non-Abelian gauge theories that are independent of the gauge-fixing parameter and satisfy ghost-free Ward identities. We first present the diagrammatic formulation of the technique in QCD, deriving, at one loop, the gauge independent gluon self-energy, quark–gluon vertex, and three-gluon vertex, together with their Abelian Ward identities. The generalization of the PT to theories with spontaneous symmetry breaking is carried out in detail, and the profound connection with the optical theorem and the disp…
Coleman-Weinberg inflation in light of Planck
2014
We revisit a single field inflationary model based on Coleman-Weinberg potentials. We show that in small field Coleman-Weinberg inflation, the observed amplitude of perturbations needs an extremely small quartic coupling of the inflaton, which might be a signature of radiative origin. However, the spectral index obtained in a standard cosmological scenario turns out to be outside the 2 sigma region of the Planck data. When a non-standard cosmological framework is invoked, such as brane-world cosmology in the Randall-Sundrum model, the spectral index can be made consistent with Planck data within 1 sigma, courtesy of the modification in the evolution of the Hubble parameter in such a scheme.…
Orientifold theory dynamics and symmetry breaking
2004
We show that it is possible to construct explicit models of electroweak symmetry breaking in which the number of techniflavors needed to enter the conformal phase of the theory is small and weakly dependent on the number of technicolors. Surprisingly, the minimal model with {\it just} two (techni)flavors, together with a suitable gauge dynamics, can be made almost conformal. The theories we consider are generalizations of orientifold type gauge theories, in which the fermions are in either two index symmetric or antisymmetric representation of the gauge group, as the underlying dynamics responsible for the spontaneous breaking of the electroweak symmetry. We first study their phase diagram,…
Higgs production in a warped extra dimension
2012
Measurements of the Higgs-boson production cross section at the LHC are an important tool for studying electroweak symmetry breaking at the quantum level, since the main production mechanism gg → h is loop-suppressed in the Standard Model (SM). Higgs production in extra-dimensional extensions of the SM is sensitive to the Kaluza-Klein (KK) excitations of the quarks, which can be exchanged as virtual particles in the loop. In the context of the minimal Randall-Sundrum (RS) model with bulk fields and a brane-localized Higgs sector, we derive closed analytical expressions for the gluon-gluon fusion process, finding that the effect of the infinite tower of virtual KK states can be described in …
The impact of the LHC nuclear program on nPDFs
2015
Volume: 612 The proton-lead and lead-lead runs at the LHC are providing an enormous amount of data sensitive to the nuclear modifications of the initial state. The measurements explore a region of phase space not probed by previous experiments opening a possibility to test and hopefully, also improve the current knowledge of nuclear parton densities. In this talk, we discuss to what extent the present quantitative results for the charge asymmetry in electroweak boson production show sensitivity to the nuclear parton distributions. Peer reviewed
Minimal noncanonical cosmologies
2006
We demonstrate how much it is possible to deviate from the standard cosmological paradigm of inflation-assisted LambdaCDM, keeping within current observational constraints, and without adding to or modifying any theoretical assumptions. We show that within a minimal framework there are many new possibilities, some of them wildly different from the standard picture. We present three illustrative examples of new models, described phenomenologically by a noncanonical scalar field coupled to radiation and matter. These models have interesting implications for inflation, quintessence, reheating, electroweak baryogenesis, and the relic densities of WIMPs and other exotics.
2017
We show that the dynamics of the Higgs field during inflation is not affected by metric fluctuations if the Higgs is an energetically subdominant light spectator. For Standard Model parameters we find that couplings between Higgs and metric fluctuations are suppressed by $\mathcal{O}(10^{-7})$. They are negligible compared to both pure Higgs terms in the effective potential and the unavoidable non-minimal Higgs coupling to background scalar curvature. The question of the electroweak vacuum instability during high energy scale inflation can therefore be studied consistently using the Jordan frame action in a Friedmann--Lemaitre--Robertson--Walker metric, where the Higgs-curvature coupling en…