Search results for "ELECTROWEAK INTERACTION"

showing 10 items of 358 documents

Precision electroweak measurements on the Z resonance

2005

We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, $\MZ$ and $\GZ$, and its couplings to fermions, for example the $\rho$ parameter and the effective electroweak mixing angle, are precisely measured. The number of light neutrino species is determined to be 2.9840…

Top quarkFORWARD-BACKWARD ASYMMETRYPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; ALEPH; DELPHI; L3; OPALGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)electron-positron physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interactionPhysicsQuantum chromodynamicsOPALElectron–positron physics; Electroweak interactions; Decays of heavy intermediate gauge bosons; Fermion–antifermion production; Precision measurements at the Z resonance; Tests of the Standard Model; Radiative corrections; Effective coupling constants; Neutral weak current; Z boson; W boson; Top quark; Higgs bosonParticle physics - ExperimentPhysicsSettore FIS/01 - Fisica SperimentaleElectroweak interactionFORWARD-BACKWARD ASYMMETRY; FERMION-PAIR PRODUCTION; HADRONIC-Z-DECAYS; TOP-QUARK MASS; ANGLE BHABHA SCATTERING; W-BOSON MASS; CROSS-SECTION ASYMMETRY; Z-LINE-SHAPE; SEMILEPTONIC BRANCHING RATIOS; CARLO EVENT GENERATORdecays of heavy intermediate gauge bosons; effective coupling constants; electron-positron physics; electroweak interactions; fermion-antifermion production; higgs boson; neutral weak current; precision measurements at the z resonance; radiative corrections; tests of the standard model; top quark; w boson; z bosonRadiative correctionsALEPHLARGE ELECTRON POSITRON COLLIDERRadiative correctionHigh Energy Physics - PhenomenologyFIS/01 - FISICA SPERIMENTALEDecays of heavy intermediate gauge bosonsL3Z-LINE-SHAPEHiggs bosonFERMION-PAIR PRODUCTIONPARTICLE PHYSICSFísica nuclearNeutrinoFermion–antifermion productionPrecision measurements at the Z resonanceTests of the Standard ModelParticle physicsZ bosonfermion-antifermion productionElectroweak interactionsHiggs bosonFOS: Physical sciencesddc:500.2Elementary particle physics ; z boson ; LEP ; electroweakDecays of heavy intermediate gauge bosonEffective coupling constantPartícules (Física nuclear)Standard ModelNeutral weak currentelectroweak theory Z boson DELPHI ALEPH OPAL L30103 physical sciencesANGLE BHABHA SCATTERINGCROSS-SECTION ASYMMETRYSEMILEPTONIC BRANCHING RATIOS010306 general physicsTOP-QUARK MASSEffective coupling constantsDELPHICoupling constantElectron–positron physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFermionCARLO EVENT GENERATORTop quarkW-BOSON MASSFORWARD-BACKWARD ASYMMETRY FERMION-PAIR PRODUCTION HADRONIC-Z-DECAYS TOP-QUARK MASS ANGLE BHABHA SCATTERING W-BOSON MASS CROSS-SECTION ASYMMETRY Z-LINE-SHAPE SEMILEPTONIC BRANCHING RATIOS CARLO EVENT GENERATOR[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Experimental High Energy PhysicsElectron–positron physicW bosonHigh Energy Physics::ExperimentFIS/04 - FISICA NUCLEARE E SUBNUCLEAREHADRONIC-Z-DECAYSPHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS
researchProduct

Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP

2013

The ALEPH, DELPHI, L3, OPAL collaborations and LEP Electroweak Working Group.-- arXiv:1302.3415

Top quarkPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; ALEPH; DELPHI; L3; OPALElectron–positron annihilationPrecision measurements at W-pair energiesWW bosonGeneral Physics and AstronomyCOLOR DIPOLE MODEL01 natural sciences7. Clean energyZZ bosonMathematical SciencesHigh Energy Physics - Experimentelectroweak interactionsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)electron-positron physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]FERMION-LOOP SCHEMEANOMALOUS MAGNETIC-MOMENTOF-MASS ENERGIES; TOP-QUARK MASS; CARLO EVENT GENERATOR; HADRONIC Z-DECAYS; INVARIANT YFS EXPONENTIATION; ANOMALOUS MAGNETIC-MOMENT; (UN)STABLE W+W-PRODUCTION; FERMION-LOOP SCHEME; COLOR DIPOLE MODEL; LEADING ORDER QCDeffective coupling constantsBosonPhysicsOPALPhysicsElectroweak interactionSettore FIS/01 - Fisica Sperimentalehep-phPrecision measurements at WW-pair energiesRadiative correctionsALEPHNuclear & Particles PhysicsLARGE ELECTRON POSITRON COLLIDER3. Good healthRadiative correctionHigh Energy Physics - PhenomenologyOF-MASS ENERGIESDecays of heavy intermediate gauge bosonsINVARIANT YFS EXPONENTIATIONPrecision measurements at W-pair energieFermion-antifermion productionL3Physical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPARTICLE PHYSICSFísica nuclearProduction (computer science)decays of heavy intermediate gauge bosons; neutral weak current; w boson; tests of the standard model; precision measurements at w-pair energies; fermion-antifermion production; top quark; electron-positron physics; electroweak interactions; effective coupling constants; higgs boson; z boson; radiative correctionsFermion–antifermion productionELECTROWEAK INTERACTIONTests of the Standard ModelParticle Physics - ExperimentParticle physicsZ bosonElectron-positron physicElectroweak interactionsLEADING ORDER QCDHiggs boson(UN)STABLE W+W-PRODUCTIONFOS: Physical sciencesdecays of heavy intermediate gauge bosonsddc:500.2Decays of heavy intermediate gauge bosonEffective coupling constantPartícules (Física nuclear)Standard ModelNuclear physicsPhysics and Astronomy (all)Neutral weak current0103 physical sciencesddc:530010306 general physicsTOP-QUARK MASSEffective coupling constantsDELPHIElectron–positron physicshep-ex010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyCARLO EVENT GENERATORTop quarkradiative correctionsElectron-positron physics; Electroweak interactions; Decays of heavy intermediate gauge bosons; Fermion-antifermion production; Precision measurements at W-pair energies; Tests of the Standard Model; Radiative corrections; Effective coupling constants; Neutral weak current; Z boson; W boson; Top quark; Higgs bosonHADRONIC Z-DECAYSCol·lisions (Física nuclear)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Experimental High Energy PhysicsLarge Electron–Positron ColliderW bosonHigh Energy Physics::ExperimentElectron-positron physics
researchProduct

Anomalous quartic gauge boson couplings at hadron colliders

2000

We analyze the potential of the Fermilab Tevatron and CERN Large Hadron Collider (LHC) to study anomalous quartic vector--boson interactions (photon photon Z Z) and (photon photon W+ W-). Working in the framework of SU(2)_L X U(1)_Y chiral Lagrangians, we study the production of photons pairs accompanied by (e+e-), (e nu), and jet pairs to impose bounds on these new couplings, taking into account the unitarity constraints. We compare our findings with the indirect limits coming from precision electroweak measurements as well as with presently available direct searches at LEPII. We show that the Tevatron Run II can provide limits on these quartic limits which are of the same order of magnitu…

Weak interactions (Nuclear physics)PhysicsNuclear and High Energy PhysicsParticle physicsGauge bosonLarge Hadron ColliderUnitarityAcceleradors de partículesElectron–positron annihilationElectroweak interactionHadronHigh Energy Physics::PhenomenologyInteraccions febles (Física nuclear)TevatronFOS: Physical sciencesPartícules (Física nuclear)Particle acceleratorsNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::ExperimentFermilabParticle Physics - PhenomenologyParticles (Nuclear physics)
researchProduct

Searches for lepton number violating $K^+$ decays

2019

The NA62 experiment at CERN reports a search for the lepton number violating decays K+ -> pi(-)e(+)e(+) and K+ -> pi(-)mu(+)mu(+) using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10(-10) and 4.2 x 10(-11) are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively.

branching ratio: upper limitK+: rare decayNA62 experiment01 natural sciencesNA62Settore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - Experimentelectron: pair productionHigh Energy Physics - Experiment (hep-ex)EconomicaK+: branching ratio[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]K meson decayPhysicsLarge Hadron ColliderElectroweak interactionlcsh:QC1-999muon: pair productionlepton number violationK+: semileptonic decayK+: secondary beamParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsCERN LabS010.46FOS: Physical scienceskaonsS010:Desig=46K+ --> pi- 2muon+Partícules (Física nuclear)PE2_2Violació CP (Física nuclear)0103 physical sciencesKaon decayslepton number violation K meson K meson decay010306 general physicslepton number: violationKaon decays Lepton Number Violationhep-ex010308 nuclear & particles physicsS010:Desig=19CERN SPSK mesonLepton numberK+ --> pi- electron positronKaon Physics; Lepton Flavour Violation; NA62S010.19lcsh:Physicsexperimental results
researchProduct

A strong electroweak phase transition from the inflaton field

2016

We study a singlet scalar extension of the Standard Model. The singlet scalar is coupled non-minimally to gravity and assumed to drive inflation, and also couple sufficiently strongly with the SM Higgs field in order to provide for a strong first order electroweak phase transition. Requiring the model to describe inflation successfully, be compatible with the LHC data, and yield a strong first order electroweak phase transition, we identify the regions of the parameter space where the model is viable. We also include a singlet fermion with scalar coupling to the singlet scalar to probe the sensitivity of the constraints on additional degrees of freedom and their couplings in the singlet sec…

cosmological inflationParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics beyond the Standard ModelScalar (mathematics)Degrees of freedom (physics and chemistry)FOS: Physical sciences01 natural sciences7. Clean energyStandard ModelGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsPhysicsInflation (cosmology)010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsInflatonextensions of the Standard ModelHiggs fieldHigh Energy Physics - Phenomenologyelectroweak phase transitionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

2016

The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ[subscript 13] using reactor [bar over ν[subscript e]] observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respec…

data analysis methodNuclear and High Energy PhysicsParticle physicsPhysics - Instrumentation and DetectorsNeutrino Detectors and TelescopeGadoliniumnuclear reactor [antineutrino/e]energy spectrumchemistry.chemical_elementFluxmixing angle: measured [neutrino]CHOOZ7. Clean energy01 natural sciencesHigh Energy Physics - Experimentflux [antineutrino]Flavor physicscapture [n]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interactionddc:530Neutron010306 general physicsPhysicsNeutrino Detectors and Telescopesbackground010308 nuclear & particles physicsoscillation [neutrino]suppressionDouble ChoozNeutron captureOscillationchemistryhydrogenInverse beta decayFlavor physicspectralHigh Energy Physics::ExperimentgadoliniumNeutrinoOrder of magnitudeexperimental results
researchProduct

Relaxion fluctuations (self-stopping relaxion) and overview of relaxion stopping mechanisms

2020

Journal of high energy physics 2005(5), 80 (2020). doi:10.1007/JHEP05(2020)080

effect: quantumNuclear and High Energy Physicscosmological modelCosmology and Nongalactic Astrophysics (astro-ph.CO)production [gauge boson]Field (physics)FOS: Physical sciencesParameter spaceHiggs particle01 natural sciences530Theoretical physicsHigh Energy Physics - Phenomenology (hep-ph)gauge boson: productionfluctuation: quantum0103 physical sciencesddc:530lcsh:Nuclear and particle physics. Atomic energy. Radioactivityinflation010306 general physicsQuantum fluctuationInflation (cosmology)PhysicsGauge boson010308 nuclear & particles physicsElectroweak interactionscale: electroweak interactionquantum [fluctuation]electroweak interaction [scale]Cosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyHomogeneousquantum [effect]Beyond Standard Modelaxion-like particleslcsh:QC770-798Electroweak scaleAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Complete One-Loop Renormalization of the Higgs-Electroweak Chiral Lagrangian

2018

The electroweak sector of the Standard Model can be formulated in a way similar to Chiral Perturbation Theory (ChPT), but extended by a singlet scalar. The resulting effective field theory (EFT) is called Higgs-Electroweak Chiral Lagrangian (EWCh$\mathcal{L}$) and is the most general approach to new physics in the Higgs sector. It solely assumes the pattern of symmetry breaking leading to the three electroweak Goldstone bosons (i.e. massive $W$ and $Z$) and the existence of a Higgs-like scalar particle. The power counting of the EWCh$\mathcal{L}$ is given by a generalization of the momentum expansion of ChPT. It is connected to a loop expansion, making the theory renormalizable order by ord…

effective Lagrangian: chiralNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryelectroweak interaction: symmetry breakingHigh Energy Physics::LatticeScalar (mathematics)standard modelFOS: Physical sciencesTechnicolorsinglet: scalarHiggs particleexpansion: higher-order01 natural sciencesHiggs sectorStandard ModelrenormalizationRenormalizationTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)effective field theoryfluctuation: scalar0103 physical sciencesEffective field theorylcsh:Nuclear and particle physics. Atomic energy. RadioactivityLimit (mathematics)010306 general physicsPhysicselectroweak interaction010308 nuclear & particles physicsnew physicsElectroweak interactionHigh Energy Physics::Phenomenologyhigher-order: 1perturbation theory: chiralGoldstone particleHiggs fieldHigh Energy Physics - Phenomenologyscalar particlebackground field[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Goldstone bosonHiggs bosonHiggs modellcsh:QC770-798expansion: heat kernelfield theory: renormalizableexpansion: momentum
researchProduct

NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering

2018

International audience; The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result.In this Wh…

electron nucleus: interactionNuclear TheoryElementary particle7. Clean energy01 natural sciencesCROSS-SECTIONSScatteringHigh Energy Physics - Phenomenology (hep-ph)Nuclear Experimentneutrino: interactionCOHERENT PION-PRODUCTIONPhysicsstrong interactionElectroweak interactionModel; Neutrino; Nuclear; Nucleus; Oscillations; Scattering; Nuclear and High Energy PhysicsHigh Energy Physics - PhenomenologyMUON-NEUTRINONeutrinoNucleonnumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsOscillationsFORM-FACTORSProcess (engineering)FOS: Physical sciencesELECTROMAGNETIC RESPONSEnuclear modelNucleusMESON-EXCHANGE CURRENTSNNLO QCD ANALYSISCHARGED-CURRENT INTERACTIONSnuclear physicsdeep inelastic scattering0103 physical sciencesNeutrinoNuclear010306 general physicsneutrino nucleus: scatteringresonance: modelelectroweak interaction010308 nuclear & particles physicsR=SIGMA-L/SIGMA-Tneutrino nucleus: interactionDeep inelastic scatteringPhysics and Astronomy13. Climate actionINELASTIC ELECTRON-SCATTERING[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Atomic nucleusneutrino: oscillationEvent (particle physics)Model
researchProduct

Muon-electron lepton-flavor-violating transitions : Shell-model calculations of transitions in 27Al

2018

In this paper we present the results of large-scale shell-model calculations of muon-to-electron lepton-flavorviolating transitions for the case of the target nucleus 27Al. We extend the previous shell-model calculations, done in the sd model space, by including also the p orbitals in order to see whether the negative-parity states produce any significant effect in the conversion rate. The analysis of the results shows the dominance of coherent transitions mediated by isovector operators and going by the ground state of the target, with practically null influence of excited positive- or negative-parity states. peerReviewed

electroweak interactionelectroweak interactions in nuclear physicsnuclear fragmentationydinfysiikkalepton induced nuclear reactionsflavor changing neutral currentsnuclear tests of fundamental interactions
researchProduct