Search results for "ELI"

showing 10 items of 31163 documents

How Offshore Groundwater Shapes the Seafloor

2018

The MARCAN project, launched last January, is working to fill a gap in our knowledge of how freshwater flowing underground shapes and alters the continental margins.

010504 meteorology & atmospheric sciencesSettore GEO/04 - Geografia Fisica E Geomorfologia010502 geochemistry & geophysics01 natural sciencesSeafloor spreadingOceanographyContinental margin13. Climate actioncontinental marginGeneral Earth and Planetary SciencesSubmarine pipelineGroundwaterGroundwaterGeology0105 earth and related environmental sciencesEos
researchProduct

Disambiguating the soils of Mars

2020

Abstract Anticipated human missions to Mars require a methodical understanding of the unconsolidated bulk sediment that mantles its surface, given its role as an accessible resource for water and as a probable substrate for food production. However, classifying martian sediment as soil has been pursued in an ad hoc fashion, despite emerging evidence from in situ missions for current and paleo-pedological processes. Here we find that in situ sediment at Gusev, Meridiani and Gale are consistent with pedogenesis related to comminuted basalts mixing with older phyllosilicates – perhaps of pluvial origin – and sulfates. Furthermore, a notable presence of hydrated amorphous phases indicates signi…

010504 meteorology & atmospheric sciencesSettore GEO/04 - Geografia Fisica E GeomorfologiaEarth scienceWeatheringMartian soilRegolith01 natural sciences0103 physical sciencesWorld Reference Base for Soil ResourcesCryosol010303 astronomy & astrophysics0105 earth and related environmental sciencesUSDA soil taxonomyMartianSoil TaxonomyGelisolAstronomy and AstrophysicsSoil classificationMineral weatheringPedogenesisSettore AGR/14 - PedologiaSpace and Planetary ScienceSoil waterEnvironmental scienceWRBSettore M-GGR/01 - GeografiaPlanetary and Space Science
researchProduct

2D Hydro-Mechanical-Chemical Modeling of (De)hydration Reactions in Deforming Heterogeneous Rock: The Periclase-Brucite Model Reaction

2020

Deformation at tectonic plate boundaries involves coupling between rock deformation, fluid flow, and metamorphic reactions, but quantifying this coupling is still elusive. We present a new two-dimensional hydro-mechanical-chemical numerical model and investigate the coupling between heterogeneous rock deformation and metamorphic (de)hydration reactions. We consider linear viscous compressible and power-law viscous shear deformation. Fluid flow follows Darcy's law with a Kozeny-Carman type permeability. We consider a closed isothermal system and the reversible (de)hydration reaction: periclase and water yields brucite. Fluid pressure within a circular or elliptical inclusion is initially bel…

010504 meteorology & atmospheric sciencesShear zoneChemical process modelingMetamorphic rockThermodynamicsNumerical simulationengineering.materialDeformation (meteorology)010502 geochemistry & geophysics01 natural sciencesPhysics::GeophysicsPhysics::Fluid DynamicsGeochemistry and PetrologyFluid dynamicsCoupling (piping)Brucite-Periclase reaction0105 earth and related environmental sciencesBruciteReaction-induced weakeningGeophysics13. Climate actionengineeringHydro-Mechanical-Chemical modelPericlaseShear zoneGeologyRock deformation coupled to reactions
researchProduct

Evidence of active fluid seepage (AFS) in the southern region of the central Mediterranean Sea

2018

Abstract Active fluid seepage (AFS) at the seafloor is a global phenomenon associated with seafloor morphologies in different geodynamic contexts. Advanced geophysical techniques have allowed geoscientists to characterise pockmarks, mounds and flares associated with AFS. We present a range of new marine geological data acquired in the southern region of the central Mediterranean Sea (northern Sicily continental margin, northwestern Sicily Channel and offshore of the Maltese Islands), which allow us to identify AFSs. AFSs are spatially distributed as clusters, aligned or isolated at different depths, ranging from few decametres offshore of the Maltese Islands; up to 400 m offshore of norther…

010504 meteorology & atmospheric sciencesSicily ChannelSettore GEO/02 - Geologia Stratigrafica E SedimentologicaRange (biology)Settore GEO/03 - Geologia Strutturale010502 geochemistry & geophysics01 natural sciencesFluid seepagePaleontologyGas flaresMediterranean seaContinental marginElectrical and Electronic EngineeringInstrumentation0105 earth and related environmental sciencesMoundgeographyFluid seepage; Gas flares; Mound; Pockmark; Sicily Channel; Instrumentation; Electrical and Electronic Engineeringgeography.geographical_feature_categoryContinental shelfApplied MathematicsPockmarkFluid seepage; Gas flares; Mound; Pockmark; Sicily ChannelGas flareCondensed Matter PhysicsSeafloor spreadingPockmarkSubmarine pipelineGeologyChannel (geography)
researchProduct

Predicting plot soil loss by empirical and process-oriented approaches. A review

2018

Soil erosion directly affects the quality of the soil, its agricultural productivity and its biological diversity. Many mathematical models have been developed to estimate plot soil erosion at different temporal scales. At present, empirical soil loss equations and process-oriented models are considered as constituting a complementary suite of models to be chosen to meet the specific user need. In this paper, the Universal Soil Loss Equation and its revised versions are first reviewed. Selected methodologies developed to estimate the factors of the model with the aim to improve the soil loss estimate are described. Then the Water Erosion Prediction Project which represents a process-oriente…

010504 meteorology & atmospheric sciencesSoil erosion; Soil loss measurements; Universal soil loss equation; Water erosion prediction project; Bioengineering; Mechanical Engineering; Industrial and Manufacturing EngineeringBioengineeringSoil science01 natural sciencesIndustrial and Manufacturing EngineeringPlot (graphics)lcsh:Agriculturewater erosion prediction project.Soil loss measurementSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalilcsh:Agriculture (General)Temporal scalesReliability (statistics)0105 earth and related environmental sciencesgeographysoil loss measurementsgeography.geographical_feature_categoryPhysical modelMathematical modelMechanical EngineeringWater erosion prediction projectlcsh:S04 agricultural and veterinary sciencesUniversal Soil Loss Equationlcsh:S1-972RillUniversal Soil Loss EquationSoil erosion040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceSpatial variability
researchProduct

Prediction of Soil Formation as a Function of Age Using the Percolation Theory Approach

2018

Recent modeling and comparison with field results showed that soil formation by chemical weathering, either from bedrock or unconsolidated material, is limited largely by solute transport. Chemical weathering rates are proportional to solute velocities. Nonreactive solute transport described by non-Gaussian transport theory appears compatible with soil formation rates. This change in understanding opens new possibilities for predicting soil production and depth across orders of magnitude of time scales. Percolation theory for modeling the evolution of soil depth and production was applied to new and published data for alpine and Mediterranean soils. The first goal was to check whether the e…

010504 meteorology & atmospheric sciencesSoil production functionSoil texturesoil depthSoil modeling percolation theory chemical weathering soil depth alpine mediterraneanmediterraneanWeatheringSoil science01 natural sciencespercolation theorychemical weathering2300 General Environmental Science910 Geography & travellcsh:Environmental sciences0105 earth and related environmental sciencesGeneral Environmental Sciencelcsh:GE1-350geographygeography.geographical_feature_categorysoil modelingBedrockalpineTree throw04 agricultural and veterinary sciences10122 Institute of GeographySettore AGR/14 - PedologiaSoil water040103 agronomy & agricultureErosion0401 agriculture forestry and fisheriesEnvironmental scienceBioturbation
researchProduct

Testing the use of an image-based technique to measure gully erosion at Sparacia experimental area

2016

The first part of this investigation was aimed at testing the use of a three-dimensional (3D) Digital Terrain Model (DTM) and a quasi-tridimensional (2.5D) Digital Elevation Model (DEM) obtained by a large series of oblique images of eroded channels taken from consumer un-calibrated and non-metric cameras. For two closed earth channels having a different sinuosity the ground measurement of some cross-sections by a profilometer (P) was carried out. The real volume of each channel was also measured by waterproofing it by a plastic film and filling it with a known volume of water. The comparison among the three methods (3D, 2.5D and P) pointed out that a limited underestimation of the total vo…

010504 meteorology & atmospheric sciencesSoil scienceChannelized04 agricultural and veterinary sciencesSinuosity01 natural sciencesVolume (thermodynamics)040103 agronomy & agricultureErosion0401 agriculture forestry and fisheriesProfilometerEmpirical relationshipDigital elevation modelGeology0105 earth and related environmental sciencesWater Science and TechnologyRemote sensingCommunication channelHydrological Processes
researchProduct

Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.

2021

Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…

010504 meteorology & atmospheric sciencesSpace weather01 natural scienceslaw.inventionDIMMINGSPhysics - Space PhysicslawRECONNECTIONCoronal mass ejectionQB Astronomy010303 astronomy & astrophysicsCoronagraphQCMISSIONQBSTREAMERSUN3rd-DASLow-coronal signaturesMagnetic StormsAstrophysics - Solar and Stellar AstrophysicsMagnetic stormsPhysical SciencesCURRENT SHEETSpace WeatherGeologyCoronal Mass EjectionsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreSpace weatherSOLAR-WIND HELIUMMAGNETIC CLOUDSFOS: Physical sciencesSolar cycle 24Astronomy & AstrophysicsArticleCurrent sheet0103 physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGeomagnetic stormScience & TechnologyAstronomyAstronomy and AstrophysicsSpace Physics (physics.space-ph)EVOLUTIONEarth's magnetic fieldQC Physics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Low-Coronal SignaturesCoronal mass ejectionsMAGNETOHYDRODYNAMIC MODELSInterplanetary spaceflightSpace science reviews
researchProduct

The tsunami phenomenon

2017

Abstract With human activity increasingly concentrating on coasts, tsunamis (from Japanese tsu = harbour, nami = wave) are a major natural hazard to today’s society. Stimulated by disastrous tsunami impacts in recent years, for instance in south-east Asia (2004) or in Japan (2011), tsunami science has significantly flourished, which has brought great advances in hazard assessment and mitigation plans. Based on tsunami research of the last decades, this paper provides a thorough treatise on the tsunami phenomenon from a geoscientific point of view. Starting with the wave features, tsunamis are introduced as long shallow water waves or wave trains crossing entire oceans without major energy l…

010504 meteorology & atmospheric sciencesSubmarineGeologyAquatic ScienceHazard analysis010502 geochemistry & geophysics01 natural sciencesWaves and shallow waterOceanographyWave shoalingNatural hazardSubmarine pipelineSedimentary rockTsunami earthquakeGeologySeismology0105 earth and related environmental sciencesProgress in Oceanography
researchProduct

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

2019

We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explo…

010504 meteorology & atmospheric sciencesSupergiant starAstrophysics::High Energy Astrophysical PhenomenaBinary numberchemistry.chemical_elementNeutron starFOS: Physical sciencesHydrodynamical simulationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCore-collapse supernovaeAstrophysics::Solar and Stellar AstrophysicsRed supergiant010303 astronomy & astrophysicsMixing (physics)HeliumStellar evolutionary modelSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSupernova dynamicSupernovaNeutron starchemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExplosive nucleosynthesisSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct