Search results for "EURA"

showing 10 items of 3336 documents

Lakes in the era of global change: moving beyond single‐lake thinking in maintaining biodiversity and ecosystem services

2020

The Anthropocene presents formidable threats to freshwater ecosystems. Lakes are especially vulnerable and important at the same time. They cover only a small area worldwide but harbour high levels of biodiversity and contribute disproportionately to ecosystem services. Lakes differ with respect to their general type (e.g. land-locked, drainage, floodplain and large lakes) and position in the landscape (e.g. highland versus lowland lakes), which contribute to the dynamics of these systems. Lakes should be generally viewed as ‘meta-systems’, whereby biodiversity is strongly affected by species dispersal, and ecosystem dynamics are contributed by the flow of matter and substances among locati…

0106 biological sciencesrestorationvesistöjen kunnostusBiodiversityContext (language use)järvet010603 evolutionary biology01 natural sciencesFreshwater ecosystemGeneral Biochemistry Genetics and Molecular Biologybiological diversityEcosystem services03 medical and health sciencesAnthropoceneEcosystemseuranta14. Life underwaterresilienceEcosystemaquatic ecosystems030304 developmental biologyresilienssi0303 health sciencesbusiness.industryecosystem changeEnvironmental resource managementvesiekosysteemitrestoration of water systemsBiodiversity15. Life on landluonnon monimuotoisuus6. Clean waterbiodiversiteettimonitoringLakesAdaptive managementekosysteemipalvelutGeography13. Climate actionmeta-systemBiological dispersalmakea vesiecosystem servicesGeneral Agricultural and Biological Sciencesbusinessfresh watersympäristönmuutoksetBiological Reviews
researchProduct

FeatherCNN: Fast Inference Computation with TensorGEMM on ARM Architectures

2020

Deep Learning is ubiquitous in a wide field of applications ranging from research to industry. In comparison to time-consuming iterative training of convolutional neural networks (CNNs), inference is a relatively lightweight operation making it amenable to execution on mobile devices. Nevertheless, lower latency and higher computation efficiency are crucial to allow for complex models and prolonged battery life. Addressing the aforementioned challenges, we propose FeatherCNN – a fast inference library for ARM CPUs – targeting the performance ceiling of mobile devices. FeatherCNN employs three key techniques: 1) A highly efficient TensorGEMM (generalized matrix multiplication) routine is app…

020203 distributed computingSource codeIterative methodComputer sciencebusiness.industrymedia_common.quotation_subjectDeep learningInference02 engineering and technologyParallel computingConvolutional neural networkMatrix multiplicationARM architectureComputational Theory and MathematicsHardware and ArchitectureSignal Processing0202 electrical engineering electronic engineering information engineeringArtificial intelligencebusinessmedia_commonIEEE Transactions on Parallel and Distributed Systems
researchProduct

Hybrid Deep Shallow Network for Assessment of Depression Using Electroencephalogram Signals

2020

Depression is a mental health disorder characterised by persistently depressed mood or loss of interest in activities resulting impairment in daily life significantly. Electroencephalography (EEG) can assist with the accurate diagnosis of depression. In this paper, we present two different hybrid deep learning models for classification and assessment of patient suffering with depression. We have combined convolutional neural network with Gated recurrent units (RGUs), thus the proposed network is shallow and much smaller in size in comparison to its counter LSTM network. In addition to this, proposed approach is less sensitive to parameter settings. Extensive experiments on EEG dataset shows…

020205 medical informaticsmedicine.diagnostic_testComputer sciencebusiness.industryDeep learningPattern recognition02 engineering and technologyElectroencephalographyConvolutional neural network0202 electrical engineering electronic engineering information engineeringmedicineAnxiety020201 artificial intelligence & image processingArtificial intelligencemedicine.symptomF1 scorebusinessDepressed moodDepression (differential diagnoses)
researchProduct

District heating networks: enhancement of the efficiency

2019

International audience; During the decades the district heating's (DH) advantages (more cost-efficient heat generation and reduced air pollution) overcompensated the additional costs of transmission and distribution of the centrally produced thermal energy to consumers. Rapid increase in the efficiency of low-power heaters, development of separated low heat density areas in cities reduce the competitiveness of the large centralized DH systems in comparison with the distributed cluster-size networks and even local heating. Reduction of transmission costs, enhancement of the network efficiency by optimization of the design of the DH networks become a critical issue. The methodology for determ…

020209 energynetwork design02 engineering and technology7. Clean energyAutomotive engineeringReduction (complexity)JEL: C - Mathematical and Quantitative Methods/C.C4 - Econometric and Statistical Methods: Special Topics/C.C4.C45 - Neural Networks and Related Topicsbenchmarking methodologies11. Sustainability0202 electrical engineering electronic engineering information engineeringdistrict heatingbusiness.industry020208 electrical & electronic engineeringdata miningBenchmarkingJEL: O - Economic Development Innovation Technological Change and Growth/O.O1 - Economic Development/O.O1.O13 - Agriculture • Natural Resources • Energy • Environment • Other Primary Products[SHS.ECO]Humanities and Social Sciences/Economics and FinanceNetwork planning and designVariable (computer science)Transmission (telecommunications)13. Climate actionHeat generationKey (cryptography)Environmental sciencebusinessJEL: C - Mathematical and Quantitative Methods/C.C2 - Single Equation Models • Single Variables/C.C2.C24 - Truncated and Censored Models • Switching Regression Models • Threshold Regression ModelsThermal energyInsights into Regional Development
researchProduct

Applications of Evolutionary Computation

2011

EvoCOMPLEX Contributions.- Coevolutionary Dynamics of Interacting Species.- Evolving Individual Behavior in a Multi-agent Traffic Simulator.- On Modeling and Evolutionary Optimization of Nonlinearly Coupled Pedestrian Interactions.- Revising the Trade-off between the Number of Agents and Agent Intelligence.- Sexual Recombination in Self-Organizing Interaction Networks.- Symbiogenesis as a Mechanism for Building Complex Adaptive Systems: A Review.- EvoGAMES Contributions.- Co-evolution of Optimal Agents for the Alternating Offers Bargaining Game.- Fuzzy Nash-Pareto Equilibrium: Concepts and Evolutionary Detection.- An Evolutionary Approach for Solving the Rubik's Cube Incorporating Exact Met…

020301 aerospace & aeronauticsMeta-optimizationbusiness.industryComputer scienceComputer Science::Neural and Evolutionary ComputationEvolutionary algorithm020206 networking & telecommunicationsGenetic programming02 engineering and technologyEvolutionary computation0203 mechanical engineeringEstimation of distribution algorithmGrammatical evolutionGenetic algorithm0202 electrical engineering electronic engineering information engineeringArtificial intelligenceCMA-ESbusiness
researchProduct

Adaptive Feedforward Control of a Pressure Compensated Differential Cylinder

2020

This paper presents the design, simulation and experimental verification of adaptive feedforward motion control for a hydraulic differential cylinder. The proposed solution is implemented on a hydraulic loader crane. Based on common adaptation methods, a typical electro-hydraulic motion control system has been extended with a novel adaptive feedforward controller that has two separate feedforward states, i.e, one for each direction of motion. Simulations show convergence of the feedforward states, as well as 23% reduction in root mean square (RMS) cylinder position error compared to a fixed gain feedforward controller. The experiments show an even more pronounced advantage of the proposed c…

0209 industrial biotechnologyAdaptive controlFluid PowerComputer sciencemotion controlComputer Science::Neural and Evolutionary Computationhydraulicsdifferential cylinder02 engineering and technologyAdaptiv reguleringadaptive controllcsh:TechnologyRoot mean squarelcsh:Chemistry020901 industrial engineering & automationControl theoryConvergence (routing)feedforwardCylinderGeneral Materials ScienceVDP::Andre maskinfag: 579Instrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processeslcsh:TProcess Chemistry and TechnologyGeneral EngineeringFeed forwardVDP::Other machinery sciences: 579021001 nanoscience & nanotechnologyMotion controllcsh:QC1-999BevegelsesstyringComputer Science Applicationslcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Hydraulikk0210 nano-technologyReduction (mathematics)lcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsApplied Sciences
researchProduct

Adaptive Robot Control – An Experimental Comparison

2012

This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with…

0209 industrial biotechnologyArtificial neural networkComputer sciencelcsh:ElectronicsRobot manipulatorlcsh:TK7800-8360Control engineering02 engineering and technologylcsh:QA75.5-76.95Computer Science ApplicationsRobot control020901 industrial engineering & automationWaveletSettore ING-INF/04 - AutomaticaArtificial Intelligence0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceSoftwareSimulationRobot control Model‐Based Adaptive control Wavelet based controlInternational Journal of Advanced Robotic Systems
researchProduct

Surrogate models for the compressive strength mapping of cement mortar materials

2021

Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method available in the literature, which can reliably predict their strength based on the mix components. This limitation is attributed to the highly nonlinear relation between the mortar’s compressive strength and the mixed components. In this paper, the application of artificial intelligence techniques for predicting the compressive strength of mortars is investigated. Specifically, Levenberg–Marquardt, biogeography-based optimization, and invasive weed optimization algorithms are used for this purpose (based on experimental data available in the literature). The c…

0209 industrial biotechnologyArtificial neural networksbusiness.industryComputer scienceCementCompressive strengthComputational intelligence02 engineering and technologyStructural engineeringSoft computing techniquesTheoretical Computer ScienceMortarSettore ICAR/09 - Tecnica Delle CostruzioniNonlinear system020901 industrial engineering & automationCompressive strength0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingGeometry and TopologyMortarbusinessMetakaolinSoftwareCement mortarSoft Computing
researchProduct

Extreme minimal learning machine: Ridge regression with distance-based basis

2019

The extreme learning machine (ELM) and the minimal learning machine (MLM) are nonlinear and scalable machine learning techniques with a randomly generated basis. Both techniques start with a step in which a matrix of weights for the linear combination of the basis is recovered. In the MLM, the feature mapping in this step corresponds to distance calculations between the training data and a set of reference points, whereas in the ELM, a transformation using a radial or sigmoidal activation function is commonly used. Computation of the model output, for prediction or classification purposes, is straightforward with the ELM after the first step. In the original MLM, one needs to solve an addit…

0209 industrial biotechnologyComputer scienceCognitive Neuroscienceneuraalilaskentaneuroverkot02 engineering and technologyrandomized learning machinesSet (abstract data type)extreme learning machine020901 industrial engineering & automationArtificial Intelligenceextreme minimal learning machine0202 electrical engineering electronic engineering information engineeringExtreme learning machineta113Training setBasis (linear algebra)Model selectionminimal learning machineOverlearningComputer Science ApplicationskoneoppiminenTransformation (function)020201 artificial intelligence & image processingAlgorithmNeurocomputing
researchProduct

Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems with Time Delay

2016

In this paper, an adaptive neural output-feedback tracking controller is designed for a class of multiple-input and multiple-output nonstrict-feedback nonlinear systems with time delay. The system coefficient and uncertain functions of our considered systems are both unknown. By employing neural networks to approximate the unknown function entries, and constructing a new input-driven filter, a backstepping design method of tracking controller is developed for the systems under consideration. The proposed controller can guarantee that all the signals in the closed-loop systems are ultimately bounded, and the time-varying target signal can be tracked within a small error as well. The main con…

0209 industrial biotechnologyComputer scienceMIMOAdaptive trackingoutput-feedback controller02 engineering and technologyNonlinear controlmultiple-input and multiple-output (MIMO)020901 industrial engineering & automationControl theoryAdaptive system0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringArtificial neural networkControl engineeringComputer Science Applications1707 Computer Vision and Pattern RecognitionFilter (signal processing)neural networksComputer Science ApplicationsHuman-Computer InteractionNonlinear systemControl and Systems EngineeringBackstepping020201 artificial intelligence & image processingAdaptive tracking; multiple-input and multiple-output (MIMO); neural networks; output-feedback controller; Control and Systems Engineering; Software; Information Systems; Human-Computer Interaction; Computer Science Applications1707 Computer Vision and Pattern Recognition; Electrical and Electronic EngineeringSoftwareInformation Systems
researchProduct