Search results for "EVAL"

showing 10 items of 7417 documents

The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations

2021

Funding Information: We are thankful to the GlobBiomass project team and Frank Martin Seifert (ESA) for valuable suggestions and stimulating scientific discussions. We are thankful to Takeo Tadono (JAXA EORC), Masato Hayashi, (JAXA EORC), Kazufumi Kobayashi (RESTEC), Åke Rosenqvist (soloEO), and Josef Kellndorfer (EBD) for support with the use and interpretation of the ALOS PALSAR mosaics. Support by the CCI Land Cover project team, in particular Sophie Bontemps (UCL), is greatly acknowledged. The help from Martin Jung (MPI-BGC) in feature selection and Ulrich Weber (MPI-BGC) for data processing for the GSV-to-AGB conversions is greatly acknowledged. Forest inventory data for the validation…

010504 meteorology & atmospheric sciencesALOS PALSAR0211 other engineering and technologies02 engineering and technology01 natural sciencesLaboratory of Geo-information Science and Remote SensingSDG 13 - Climate ActionGE1-350BiomassEMISSIONSSDG 15 - Life on LandQE1-996.5GROWING STOCK VOLUMETaigaGeologyPE&RCPlant Production SystemsMAPbiomaCARBON-CYCLECrop and Weed EcologySynthetic aperture radarPhysical geographyRETRIEVALUNITED-STATESEarth and Planetary Sciences(all)Synthetic aperture radarSubtropicsSpatial distributionEnvironmental scienceCarbon cycletropicsTemperate climateBOREAL FORESTSMANAGEMENTLife ScienceSpatial ecologySpatial distributionLaboratorium voor Geo-informatiekunde en Remote Sensing021101 geological & geomatics engineering0105 earth and related environmental sciencesForest inventoryRadarTemperate climateEnvironmental sciencesSatelliteEarth and Environmental SciencesDENSITYPlantaardige ProductiesystemenSpatial ecologyEnvironmental scienceGeneral Earth and Planetary SciencescavelabPhysical geographyForest inventory
researchProduct

Statistical retrieval of atmospheric profiles with deep convolutional neural networks

2019

Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesWeather forecasting02 engineering and technologycomputer.software_genreAtmospheric measurements01 natural sciencesConvolutional neural networkLinear regressionRedundancy (engineering)Information retrievalInfrared measurementsComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesArtificial neural networkbusiness.industryDeep learningDimensionality reductionPattern recognitionAtomic and Molecular Physics and OpticsComputer Science Applications13. Climate actionNoise (video)Artificial intelligencebusinesscomputerNeural networksISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing

2019

[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…

010504 meteorology & atmospheric sciencesComputer scienceEconomicsGround spectrometersScience0211 other engineering and technologiesContext (language use)02 engineering and technologyGround spectrometer01 natural sciencesSpectral lineRetrieval methodApproximation errorSun-induced chlorophyll fluorescenceSensitivity (control systems)910 Geography & travelChlorophyll fluorescence021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRetrieval methodsSpectrometerSun-induced chlorophyll fluorescence; Ground spectrometers; Retrieval methods1900 General Earth and Planetary SciencesQHyperspectral imagingsun-induced chlorophyll fluorescence; ground spectrometers; retrieval methods3. Good health10122 Institute of GeographyFISICA APLICADALine (geometry)General Earth and Planetary Sciencesddc:620Interpolation
researchProduct

Understanding deep learning in land use classification based on Sentinel-2 time series

2020

AbstractThe use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims …

010504 meteorology & atmospheric sciencesEnvironmental economicsComputer scienceProcess (engineering)0211 other engineering and technologieslcsh:MedicineClimate changeContext (language use)02 engineering and technology01 natural sciencesArticleRelevance (information retrieval)lcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpretabilityMultidisciplinaryLand useContextual image classificationbusiness.industryDeep learninglcsh:RClimate-change policy15. Life on landComputer scienceData scienceEnvironmental sciencesEnvironmental social sciences13. Climate actionlcsh:QAnomaly detectionArtificial intelligencebusinessCommon Agricultural PolicyAgroecologyScientific Reports
researchProduct

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

2019

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …

010504 meteorology & atmospheric sciencesFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTRE0208 environmental biotechnologySoil ScienceReview02 engineering and technologyPhotochemical Reflectance Index01 natural sciencesArticleGEO/11 - GEOFISICA APPLICATASIF retrieval methodsRadiative transfer modellingRadiative transfer910 Geography & travelComputers in Earth SciencesChlorophyll fluorescence1111 Soil Science1907 GeologyAirborne instruments0105 earth and related environmental sciencesRemote sensingStress detectionGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERA1903 Computers in Earth SciencesPrimary productionGeologyVegetationPassive optical techniquesField (geography)020801 environmental engineeringGEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of GeographySun-induced fluorescenceRemote sensing (archaeology)Sun-induced fluorescence Steady-state photosynthesis Stress detection Radiative transfer modelling SIF retrieval methods. Satellite sensors Airborne instruments Applications Terrestrial vegetation Passive optical techniques. ReviewApplicationsTerrestrial vegetationEnvironmental scienceSatelliteSteady-state photosynthesisSatellite sensors
researchProduct

Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field

2014

International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…

010504 meteorology & atmospheric sciencesMean squared errorMeteorology[SDE.MCG]Environmental Sciences/Global Changes0211 other engineering and technologiesSoil Science02 engineering and technologyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesPhysics::Geophysics14. Life underwaterComputers in Earth SciencesTime series021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingAtmospheric soundingValencia Anchor StationRadiometerGeologyInversion (meteorology)SMAP15. Life on landBrightness temperatureSoil waterEnvironmental scienceRadiometrySoil moisture retrievalELBARA[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingSMOSRemote Sensing of Environment
researchProduct

PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration

2017

Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and …

010504 meteorology & atmospheric sciencesScattering albedo0208 environmental biotechnologyradiometry02 engineering and technologyretrieval methodologycomputer.software_genre01 natural scienceslaw.inventionlawremote sensing by radarRadaractive-passive microwavesPhysics::Atmospheric and Oceanic PhysicsIndexespassive microwave remote sensingRemote sensingremote sensing by laser beamGeographyLidaroptical radarcrucial parametersmedicine.symptomvegetation scattering coefficientData integrationBackscattervegetation mappingta1171τ-ω modelsoilPhysics::GeophysicsICESat lidar vegetation heightsvegetationmedicineVegetation optical depthbackscatter0105 earth and related environmental sciencesRemote sensingsensor fusionRadiometerScatteringnovel multisensor approachSMAPAlbedoMulti-sensor020801 environmental engineeringradiometer dataVegetation (pathology)multisensor data integration approachcomputerICESatalbedo
researchProduct

Occurrence of fossil organic matter in modern environments: optical, geochemical and isotopic evidence

2011

International audience; This study relates to the input and fate of fossil organic matter (FOM) in the modern environment, and focuses on two experimental watersheds overlying Jurassic marls: Le Laval and Le Brusquet (1 km(2) in area), located near Digne, Alpes-de-Haute-Provence, France. Considering that FOM delivery is mainly a result of different processes affecting sedimentary rocks [(bio)chemical and mechanical weathering], samples from different pools were collected: bedrocks, weathering profiles, soils and riverine particles. The samples were examined using complementary techniques: optical (palynofacies methods), geochemical (Rock-Eval 6 pyrolysis, C/N ratio), molecular (gas chromato…

010504 meteorology & atmospheric sciences[SDE.MCG]Environmental Sciences/Global ChangesMineralogyWeatheringatmospheric carbon010502 geochemistry & geophysics01 natural sciencesstorageGeochemistry and Petrology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/GeochemistryMarlEnvironmental ChemistryOrganic matterglobal carbon balance0105 earth and related environmental scienceschemistry.chemical_classificationvariabilitysedimentary-rocks[ SDU.STU.GC ] Sciences of the Universe [physics]/Earth Sciences/GeochemistryerosionPollutionPalynofaciesALPES DE HAUTE PROVENCE[ SDE.MCG ] Environmental Sciences/Global Changesmarine-sedimentschemistry13. Climate actionSoil waterrock-eval pyrolysis[SDE]Environmental SciencesErosionSedimentary rockmodern soilshaute-provencePyrolysisGeology
researchProduct

Soil moisture modelling of a SMOS pixel: interest of using the PERSIANN database over the Valencia Anchor Station

2010

In the framework of Soil Moisture and Ocean Salinity (SMOS) Calibration/Validation (Cal/Val) activities, this study addresses the use of the PERSIANN-CCS<sup>1</sup>database in hydrological applications to accurately simulate a whole SMOS pixel by representing the spatial and temporal heterogeneity of the soil moisture fields over a wide area (50×50 km<sup>2</sup>). The study focuses on the Valencia Anchor Station (VAS) experimental site, in Spain, which is one of the main SMOS Cal/Val sites in Europe. <br><br> A faithful representation of the soil moisture distribution at SMOS pixel scale (50×50 km<sup>2</sup>) requires an accurate estimation…

010504 meteorology & atmospheric sciences[SDE.MCG]Environmental Sciences/Global Changessatellite0207 environmental engineeringContext (language use)02 engineering and technologysystemcomputer.software_genrerainfall estimation01 natural scienceslcsh:Technologylcsh:TD1-1066Precipitation[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrologylcsh:Environmental technology. Sanitary engineering020701 environmental engineeringWater contentprecipitation estimationretrievallcsh:Environmental sciences0105 earth and related environmental sciencesRemote sensinglcsh:GE1-350DatabaseRain gaugeMoisturelcsh:Tlcsh:Geography. Anthropology. RecreationLife Sciencesneural-network15. Life on landparameterizationokavango riverproductsafricalcsh:G13. Climate actionSoil waterPERSIANNEnvironmental scienceSpatial variabilitycomputerHydrology and Earth System Sciences
researchProduct

Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data.

2019

Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with…

010504 meteorology & atmospheric sciencesradiative transfer models0211 other engineering and technologiesemulation02 engineering and technologytop-of-atmosphere radiance data01 natural sciencesEmulation; Global sensitivity analysis; Machine learning; MODTRAN; PROSAIL; Radiative transfer models; Retrieval; Sentinel-2; Top-of-atmosphere radiance dataKrigingRange (statistics)Radiative transferLeaf area indexlcsh:Scienceretrieval021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingMODTRANPROSAILMODTRANAtmospheric correctionradiative transfer models; global sensitivity analysis; emulation; machine learning; top-of-atmosphere radiance data; PROSAIL; MODTRAN; retrieval; Sentinel-2machine learningglobal sensitivity analysisLookup tableRadianceGeneral Earth and Planetary SciencesEnvironmental sciencelcsh:QSentinel-2Remote sensing
researchProduct