Search results for "EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS"
showing 10 items of 88 documents
2018
In this study we analysed the effects of prophylactic biolistic DNA vaccination with plasmids encoding the encephalitogenic protein myelin oligodendrocyte glycoprotein (MOG) on the severity of a subsequently MOGp35-55-induced EAE and on the underlying immune response. We compared the outcome of vaccination with MOG-encoding plasmids alone or in combination with vectors encoding the regulatory cytokines IL-10 and TGF-s1, respectively. MOG expression was restricted to skin dendritic cells (DCs) by the use of the DC-specific promoter of the fascin1 gene (pFscn-MOG). For comparison, the strong and ubiquitously active CMV promoter was employed (pCMV-MOG), which allows MOG expression in all trans…
A Novel Cervical Spinal Cord Window Preparation Allows for Two-Photon Imaging of T-Cell Interactions with the Cervical Spinal Cord Microvasculature d…
2017
T-cell migration across the blood-brain barrier (BBB) is a crucial step in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple scle rosis (MS). Two-photon intravital microscopy (2P-IVM) has been established as a powerful tool to study cell-cell interactions in inflammatory EAE lesions in living animals. In EAE, central nervous system inflammation is strongly pronounced in the spinal cord, an organ in which 2P-IVM imaging is technically very challenging and has been limited to the lumbar spinal cord. Here, we describe a novel spinal cord window preparation allowing to use 2P-IVM to image immune cell interactions with the cervical spinal cord micro…
Lack of NFATc1 SUMOylation prevents autoimmunity and alloreactivity
2020
A novel transgenic mouse, in which the transcription factor NFATc1 bears lysine-to-arginine mutations that prevent modification by SUMO, develops normally and is healthy. However, SUMO-insensitive NFATc1 transmits strong tolerogenic signals, thus preventing autoimmune and alloimmune T cell responses.
Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach
2018
Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This netw…
A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis.
2017
Multiple sclerosis (MS) is a human neurodegenerative disease characterized by the invasion of autoreactive T cells from the periphery into the CNS. Application of pan-histone deacetylase inhibitors (HDACi) ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model for MS, suggesting that HDACi might be a potential therapeutic strategy for MS. However, the function of individual HDAC members in the pathogenesis of EAE is not known. In this study we report that mice with a T cell-specific deletion of HDAC1 (using the Cd4-Cre deleter strain; HDAC1-cKO) were completely resistant to EAE despite the ability of HDAC1cKO CD4+ T cells to differentiate into Th17 cells. RNA sequencin…
Dimethyl fumarate alters intracellular Ca2+ handling in immune cells by redox-mediated pleiotropic effects
2019
Dimethyl fumarate (DMF) is widely used to treat the human autoimmune diseases multiple sclerosis (MS) and psoriasis. DMF causes short-term oxidative stress and activates the antioxidant response via the transcription factor Nrf2 but its immunosuppressive effect is not well understood. Immune cell activation depends on calcium signaling which itself is influenced by the cellular redox state. We therefore measured calcium, reactive oxygen species levels and glutathione content in lymphocytes from immunized mice before onset of experimental autoimmune encephalomyelitis, in peripheral blood mononuclear cells from MS patients treated with DMF, and in mouse splenocytes treated ex vivo with DMF. T…
Peripherally Induced Regulatory T Cells: Recruited Protectors of the Central Nervous System against Autoimmune Neuroinflammation
2017
Defects in regulatory T cells (Treg cells) aggravate multiple sclerosis (MS) after its onset and the absence of Treg cell functions can also exacerbate the course of disease in an animal model of MS. However, autoimmune neuroinflammation in many MS models can be acutely provoked in healthy animals leading to an activation of encephalitogenic T cells despite the normal induction of immune tolerance in the thymus including thymically-produced (t)Treg cells. In contrast, neuroinflammation can be ameliorated or even completely prevented by the antigen-specific Treg cells formed extrathymically in the peripheral immune system (pTreg cells) during tolerogenic responses to relevant neuronal antige…
2020
The brain ventricles are part of the fluid compartments bridging the CNS with the periphery. Using MRI, we previously observed a pronounced increase in ventricle volume (VV) in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here, we examined VV changes in EAE and MS patients in longitudinal studies with frequent serial MRI scans. EAE mice underwent serial MRI for up to 2 months, with gadolinium contrast as a proxy of inflammation, confirmed by histopathology. We performed a time-series analysis of clinical and MRI data from a prior clinical trial in which RRMS patients underwent monthly MRI scans over 1 year. VV increased dramatically during preonset E…
Cellular mechanisms of IL-17-induced blood-brain barrier disruption.
2009
Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS)…
Lack of requirement for CD8+ cells in recovery from and resistance to experimental autoimmune encephalomyelitis.
1995
Abstract Experimental autoimmune encephalomyelitis (EAE) is a model of T-cell mediated autoimmune disease. Active disease is mediated by myelin basic protein specific CD4+T-cells, whose adoptive transfer can also induce passive disease. In the Lewis rat EAE is a transient disease inducing lasting resistance to rechallenge. The mechanisms of recovery and resistance are poorly understood. CD8+suppressor T-cells have mostly been thought to be central, especially in resistance to reinduction of the disease. In this study we showed by complete depletion of CD8+cells that this subset does not influence either recovery or resistance to EAE in the Lewis rat. This was further confirmed by depleting …