Search results for "Elastic recoil"
showing 3 items of 43 documents
Oxidation-Induced Changes in the ALD-Al2O3/InAs(100) Interface and Control of the Changes for Device Processing
2018
InAs crystals are emerging materials for various devices like radio frequency transistors and infrared sensors. Control of oxidation-induced changes is essential for decreasing amounts of the harmful InAs surface (or interface) defects because it is hard to avoid the energetically favored oxidation of InAs surface parts in device processing. We have characterized atomic-layer-deposition (ALD) grown Al2O3/InAs interfaces, preoxidized differently, with synchrotron hard X-ray photoelectron spectroscopy (HAXPES), low-energy electron diffraction, scanning tunneling microscopy, and time-of-flight elastic recoil detection analysis. The chemical environment and core-level shifts are clarified for w…
Viewpoint: On the hysteresis in the human Achilles tendon.
2012
This viewpoint was stimulated by two observations: 1) the statistical skewness whereby numerous articles have reported tendon stiffness and Young9s modulus, but far fewer have reported tendon hysteresis; 2) in vivo human studies seem very often to report hysteresis values greater than 10%, suggesting either that there are methodological differences between human and animal studies, or that human tendons have a much poorer capacity to store and reutilize elastic energy. In this article we focus on the healthy human Achilles/gastrocnemius tendon (AT) since it has an important locomotor function and clearly a low AT hysteresis would allow elastic recoil for efficient locomotion. We discuss tha…
Potku – New analysis software for heavy ion elastic recoil detection analysis
2014
Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of- flight–energy (ToF–E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF–E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined rang…