Search results for "Elastoplasticity"
showing 7 items of 17 documents
Elastoplastic analysis for active macro-zones via multidomain symmetric Galerkin BEM
2010
In this paper a strategy to perform elastoplastic analysis by using the Symmetric Boundary Element Method (SBEM) for multidomain type problems is shown. This formulation uses a self-stresses equation to evaluate the trial stress in the predictor phase, and to provide the elastoplastic solution in the corrector one. Since the solution is obtained through a return mapping involving simultaneously all the plastically active bem-elements, the proposed strategy does not depend on the path of the plastic strain process and it is characterized by computational advantages due the considerable decrease of the plastic iterations number. This procedure has been developed inside Karnak.sGbem code [1] b…
Lower bound limit analysis by bem: Convex optimization problem and incremental approach
2013
Abstract The lower bound limit approach of the classical plasticity theory is rephrased using the Multidomain Symmetric Galerkin Boundary Element Method, under conditions of plane and initial strains, ideal plasticity and associated flow rule. The new formulation couples a multidomain procedure with nonlinear programming techniques and defines the self-equilibrium stress field by an equation involving all the substructures (bem-elements) of the discretized system. The analysis is performed in a canonical form as a convex optimization problem with quadratic constraints, in terms of discrete variables, and implemented using the Karnak.sGbem code coupled with the optimization toolbox by MatLab…
On the computational aspects of a symmetric multidomain BEM for elastoplastic analysis
2012
The symmetric boundary element method (SBEM) is applied to the elasto-plastic analysis of bodies subdivided into substructures. This methodology is based on the use of: a multidomain SBEMapproach, for the evaluation of the elastic predictor; a return mapping algorithm based on the extremal paths theory, for the evaluation of inelastic quantities characterizing the plastic behaviour of each substructure; and a transformation of the domain inelastic integrals of each substructure into corresponding boundary integrals. The elastic analysis is performed by using the SBEM displacement approach, which has the advantage of creating system equations that only consist of nodal kinematical unknowns a…
Active macro-zone approach for incremental elastoplastic-contact analysis
2013
The symmetric boundary element method, based on the Galerkin hypotheses, has found an application in the nonlinear analysis of plasticity and in contact-detachment problems, but both dealt with separately. In this paper, we want to treat these complex phenomena together as a linear complementarity problem. A mixed variable multidomain approach is utilized in which the substructures are distinguished into macroelements, where elastic behavior is assumed, and bem-elements, where it is possible that plastic strains may occur. Elasticity equations are written for all the substructures, and regularity conditions in weighted (weak) form on the boundary sides and in the nodes (strong) between cont…
Multidomain SBEM analysis of two dimensional elastoplastic-contact problems
2012
The Symmetric Boundary Element Method based on the Galerkin hypotheses has found application in the nonlinear analysis of plasticity and contact-detachment problems, but dealt with separately. In this paper we wants to treat these complex phenomena together. This method works in structures by introducing a subdivision into sub-structures, distinguished into macroelements, where elastic behaviour is assumed, and bem-elements, where it is possible for plastic strains to occur. In all the sub-structures, elasticity equations are written and regularity conditions in weighted (weak) form and/or in nodal (strong) form between boundaries have to be introduced, to attain the solving equation system.
The interphase elasto-plastic damaging model applied to masonry structures
2012
Multidomain SBEM analysis for two dimensionalelastoplastic-contact problems
2012
The Symmetric Boundary Element Method based on the Galerkin hypotheses has found application in the nonlinear analysis of plasticity and contact-detachment problems, but dealt with separately. In this paper we wants to treat these complex phenomena together. This method works in structures by introducing a subdivision into sub-structures, distinguished into macroelements, where elastic behaviour is assumed, and bem-elements, where it is possible for plastic strains to occur. In all the sub-structures, elasticity equations are written and regularity conditions in weighted (weak) form and/or in nodal (strong) form between boundaries have to be introduced, to attain the solving equation system.