Search results for "Electrochemical"

showing 10 items of 574 documents

Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery

2017

Abstract Thermally regenerative ammonia-based batteries (TRABs) have been developed to harvest low-grade waste heat as electricity. To improve the power production and anodic coulombic efficiency, the use of ethylenediamine as an alternative ligand to ammonia was explored here. The power density of the ethylenediamine-based battery (TRENB) was 85 ± 3 W m−2-electrode area with 2 M ethylenediamine, and 119 ± 4 W m−2 with 3 M ethylenediamine. This power density was 68% higher than that of TRAB. The energy density was 478 Wh m−3-anolyte, which was ∼50% higher than that produced by TRAB. The anodic coulombic efficiency of the TRENB was 77 ± 2%, which was more than twice that obtained using ammon…

Battery (electricity)Materials scienceEnergy Engineering and Power TechnologyEthylenediamine02 engineering and technology010402 general chemistry7. Clean energy01 natural scienceschemistry.chemical_compoundWaste heatElectrical and Electronic EngineeringPhysical and Theoretical ChemistryPower densityEnergy recoveryWaste managementRenewable Energy Sustainability and the Environment021001 nanoscience & nanotechnology0104 chemical sciencesSeparation processAnodeChemical engineeringchemistryLow-grade waste heat Thermally regenerative battery Ethylenediamine High power production Thermoelectrochemical systems0210 nano-technologyFaraday efficiencyJournal of Power Sources
researchProduct

Atomic Layer Deposition of Spinel Lithium Manganese Oxide by Film-Body-Controlled Lithium Incorporation for Thin-Film Lithium-Ion Batteries

2013

Lithium manganese oxide spinels are promising candidate materials for thin-film lithium-ion batteries owing to their high voltage, high specific capacity for storage of electrochemical energy, and minimal structural changes during battery operation. Atomic layer deposition (ALD) offers many benefits for preparing all-solid-state thin-film batteries, including excellent conformity and thickness control of the films. Yet, the number of available lithium-containing electrode materials obtained by ALD is limited. In this article, we demonstrate the ALD of lithium manganese oxide, LixMn2O4, from Mn(thd)3, Li(thd), and ozone. Films were polycrystalline in their as-deposited state and contained le…

Battery (electricity)Materials scienceta114Lithium vanadium phosphate batterySpinelInorganic chemistrychemistry.chemical_elementengineering.materialElectrochemical energy conversionSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAtomic layer depositionGeneral EnergychemistryImpurityengineeringLithiumCrystallitePhysical and Theoretical ChemistryThe Journal of Physical Chemistry C
researchProduct

On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients

2020

Abstract Electrical energy storage can enhance the efficiency in the use of fluctuating renewable sources, e.g. solar and wind energy. The Acid/Base Flow Battery is an innovative and sustainable process to store electrical energy in the form of pH and salinity gradients via electrodialytic reversible techniques. Two electromembrane processes are involved: Bipolar Membrane Electrodialysis during the charge phase and its opposite, Bipolar Membrane Reverse Electrodialysis, during the discharge phase. For the first time, the present work aims at predicting the performance of this energy storage device via the development of a dynamic mathematical model based on a multi-scale approach with distr…

Battery (electricity)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWork (thermodynamics)Wind powerbusiness.industry020209 energyMechanical EngineeringElectric potential energy02 engineering and technologyBuilding and ConstructionManagement Monitoring Policy and LawElectrodialysis7. Clean energy6. Clean waterEnergy storageRenewable energyGeneral Energy020401 chemical engineeringReversed electrodialysisElectrochemical energy storage Electrodialytic battery Ion-exchange membrane Ionic shortcut currents Process modelling Water splitting0202 electrical engineering electronic engineering information engineeringEnvironmental science0204 chemical engineeringProcess engineeringbusinessApplied Energy
researchProduct

Battery technologies for electric vehicles

2017

This chapter gives a brief overview of the following types of vehicles: battery electric vehicle (BEV), plug-in hybrid electric vehicle (PHEV), and hybrid electric vehicle (HEV). It then provides a comprehensive summary of the electrochemical energy storage including Ni-MH battery, Li-ion battery, and advanced rechargeable battery. Battery chemistry is explained in a detailed manner including an abbreviated modelling approach. Also, the issues of battery-charging method, management, and monitoring are addressed. The chapter concludes with a discussion on battery cell voltage balancing and temperature monitoring in addition to the battery state-of-charge (SOC) estimation.

Battery (electricity)Temperature monitoringbusiness.product_categoryBattery cellbusiness.industryComputer scienceElectrical engineering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesHardware_GENERALElectric vehicleBattery electric vehicleComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSAutomotive battery0210 nano-technologybusinessElectrochemical energy storageVoltage
researchProduct

Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore

2015

We explore the electrical rectification of large amplitude fluctuating signals by an asymmetric nanostructure operating in aqueous solution. We show experimentally and theoretically that a load capacitor can be charged to voltages close to 1 V within a few minutes by converting zero time-average potentials of amplitudes in the range 0.5–3 V into average net currents using a single conical nanopore. This process suggests that significant energy conversion and storage from an electrically fluctuating environment is feasible with a nanoscale pore immersed in a liquid electrolyte solution, a system characteristic of bioelectronics interfaces, electrochemical cells, and nanoporous membranes.

BioelectronicsMultidisciplinaryMaterials scienceNanostructurebusiness.industryElectrolyteConical surfaceBioinformaticsArticleElectrochemical celllaw.inventionTransductionNanoporeCapacitorlawIon channelsFISICA APLICADADevicesOptoelectronicsEnergy transformationbusinessScientific Reports
researchProduct

Deciphering the Electroluminescence Behavior of Silver(I)‐Complexes in Light‐Emitting Electrochemical Cells: Limitations and Solutions toward Highly …

2019

BiomaterialsMaterials scienceElectrochemistryNanotechnologyElectroluminescenceCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsElectrochemical cellAdvanced Functional Materials
researchProduct

Monofunctional pyrenes at carbon nanotube electrodes for direct electron transfer H2O2 reduction with HRP and HRP-bacterial nanocellulose

2021

Abstract The non-covalent modification of carbon nanotube electrodes with pyrene derivatives is a versatile approach to enhance the electrical wiring of enzymes for biosensors and biofuel cells. We report here a comparative study of five pyrene derivatives adsorbed at multi-walled carbon nanotube electrodes to shed light on their ability to promote direct electron transfer with horseradish peroxidase (HRP) for H2O2 reduction. In all cases, pyrene-modified electrodes enhanced catalytic reduction compared to the unmodified electrodes. The pyrene N-hydroxysuccinimide (NHS) ester derivative provided access to the highest catalytic current of 1.4 mA cm−2 at 6 mmol L−1 H2O2, high onset potential …

Biomedical EngineeringBiophysics02 engineering and technologyCarbon nanotube01 natural sciences7. Clean energyNanocelluloselaw.inventionCatalysisBiofuel cell cathodeHorseradish peroxidasechemistry.chemical_compoundElectron transferlawElectrochemistry[CHIM]Chemical SciencesComputingMilieux_MISCELLANEOUSChemistry010401 analytical chemistryGeneral MedicineNanocellulose electrode021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical sciencesElectrochemical gas sensorElectrochemical sensorDirect electron transferElectrodeBioelectrocatalysisPyrene0210 nano-technologyBiosensorBiotechnology
researchProduct

Electrochemical probe for the monitoring of DNA-protein interactions.

2010

Self-assembly of thiol-terminated oligonucleotides on gold substrates provides a convenient way for DNA-functionalized surfaces. Here we describe the development of an electrochemical assay for the detection of DNA-protein interactions based on the modification of the electrochemical response of methylene blue (MB) intercalated in the DNA strands. Using a functionalized electrode with double stranded DNA carrying T3 RNA polymerase binding sequence, we show a substantial attenuation of the current upon the DNA-protein interaction. Moreover, a Langmuir binding isotherm for T3 RNA polymerase (T3 Pol) gives a dissociation constant K(D) equal to 0.46+/-0.23 microM. Such value is 100 times lower …

Biomedical EngineeringBiophysicsBiosensing TechniquesIn Vitro Techniqueschemistry.chemical_compoundViral ProteinsElectrochemistrymedicineT7 RNA polymeraseAnimalsBovine serum albuminBinding sitePromoter Regions Geneticchemistry.chemical_classificationBinding SitesbiologyBase SequenceOligonucleotideProteinsSerum Albumin BovineGeneral MedicineDNADNA-Directed RNA PolymerasesElectrochemical TechniquesMolecular biologyDissociation constantMethylene BlueEnzymechemistryDNA Viralbiology.proteinBiophysicsCattleGoldMethylene blueDNABiotechnologymedicine.drugBiosensorsbioelectronics
researchProduct

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

2019

[EN] Based on the unique ability of defibrillated sepiolite (SEP) to form stable and homogeneous colloidal dispersions of diverse types of nanoparticles in aqueous media under ultrasonication, multicomponent conductive nanoarchitectured materials integrating halloysite nanotubes (HNTs), graphene nanoplatelets (GNPs) and chitosan (CHI) have been developed. The resulting nanohybrid suspensions could be easily formed into films or foams, where each individual component plays a critical role in the biocomposite: HNTs act as nanocontainers for bioactive species, GNPs provide electrical conductivity (enhanced by doping with MWCNTs) and, the CHI polymer matrix introduces mechanical and membrane pr…

BionanocompositesElectrochemical deviceMaterials scienceHalloysite nanotubeSepioliteGeneral Physics and AstronomyNanoparticleNanotechnology02 engineering and technologyhalloysite nanotubesengineering.material010402 general chemistrylcsh:Chemical technology01 natural sciencesHalloysitelcsh:TechnologyFull Research PaperChitosanchemistry.chemical_compoundBionanocompositeNanotechnologyGeneral Materials Sciencelcsh:TP1-1185Electrical and Electronic Engineeringlcsh:Sciencechemistry.chemical_classificationHalloysite nanotubeslcsh:Tbionanocompositeselectrochemical devicesNanocontainerPolymer021001 nanoscience & nanotechnologycarbon nanostructuresCarbon nanostructureslcsh:QC1-9990104 chemical sciencesCarbon nanostructureNanoscienceMembranechemistryElectrochemical devicesengineeringlcsh:QBiocomposite0210 nano-technologyBiosensorlcsh:Physics
researchProduct

Long-Living Emitting Electrochemical Cells Based on Supramolecular π-π Interactions

2009

AbstractThe complex [Ir(ppy)2(dpbpy)][PF6] (Hppy = 2-phenylpyridine, dpbpy = 6,6'-diphenyl-2,2'-bipyridine) has been prepared and evaluated as an electroluminescent component for light-emitting electrochemical cells (LECs). The complex exhibits two intramolecular face-to-face π-stacking interactions and long-lived LECs have been constructed; the device characteristics are not significantly improved in comparison to analogous LECs with 6-phenyl-2,2'-bipyridine with only one π-stacking interaction.

Bipyridinechemistry.chemical_compoundMaterials sciencechemistryIntramolecular forceSupramolecular chemistryElectroluminescenceLuminescencePhotochemistryElectrochemical cellMRS Proceedings
researchProduct