Search results for "Electromagnet"

showing 10 items of 1862 documents

Vacancy-like Dressed States in Topological Waveguide QED

2020

We identify a class of dressed atom-photon states formingat the same energy of the atom at any coupling strength. As a hallmark, their photonic component is an eigenstate of the bare photonic bath with a vacancy in place of the atom. The picture accommodates waveguide-QED phenomena where atoms behave as perfect mirrors, connecting in particular dressed bound states (BS) in the continuum or BIC with geometrically-confined photonic modes. When applied to photonic lattices, the framework provides a general criterion to predict dressed BS in lattices with topological properties by putting them in one-to-one correspondence with photonic BS. New classes of dressed BS are thus predicted in the pho…

---Condensed Matter::Quantum GasesPhysicsQuantum PhysicsWaveguide (electromagnetism)PhotonSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciContinuum (topology)business.industryFOS: Physical sciencesPhysics::OpticsGeneral Physics and Astronomy01 natural sciencesCavity QED Photonic bound states topological latticeVacancy defectQuantum mechanics0103 physical sciencesAtomBound statePhysics::Atomic PhysicsPhotonicsQuantum Physics (quant-ph)010306 general physicsbusinessEigenvalues and eigenvectors
researchProduct

Color Sensitive Response of Graphene/Graphene Quantum Dot Phototransistors

2019

We present the fabrication and characterization of all-carbon phototransistors made of graphene three terminal devices, coated with atomically precise graphene quantum dots (GQD). Chemically synthesized GQDs are the light absorbing materials, while the underlying chemical vapor deposition (CVD)-grown graphene layer acts as the charge transporting channel. We investigated three types of GQDs with different sizes and edge structures, having distinct and characteristic optical absorption in the UV–vis range. The photoresponsivity exceeds 106 A/W for vanishingly small incident power (<10–12 W), comparing well with state of the art sensitized graphene photodetectors. More importantly, the photor…

---Materials scienceAbsorption spectroscopybusiness.industryGraphenePhotodetector02 engineering and technologyChemical vapor deposition010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesGraphene quantum dot0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionResponsivityGeneral EnergyQuantum dotlawOptoelectronicsPhysical and Theoretical Chemistry0210 nano-technologybusinessAbsorption (electromagnetic radiation)
researchProduct

Atom-field dressed states in slow-light waveguide QED

2015

We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multi-photon dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide a both qualitative and quantitative description of the essential strong…

---Waveguide (electromagnetism)Field (physics)FOS: Physical sciencesPhysics::OpticsSlow light01 natural sciences010305 fluids & plasmasdressed states.0103 physical sciencesAtomBound statePhysics::Atomic Physics010306 general physicsPhysicsQuantum Physicsbusiness.industryWaveguide QEDatom-photon bound statePhotonicsAtomic physicsQuantum Physics (quant-ph)businesscoupled-cavity arrayExcitationMicrowaveWaveguide QED; coupled-cavity arrays; atom-photon bound states; dressed states.
researchProduct

Energy transfer in LH2 of Rhodospirillum Molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations.

2001

Two color transient absorption measurements were performed on a LH2 complex from Rhodospirillum molischianum by using several excitation wavelengths (790, 800, 810, and 830 nm) and probing in the spectral region from 790 to 870 nm at room temperature. The observed energy transfer time of ∼1.0 ps from B800 to B850 at room temperature is longer than the corresponding rates in Rhodopseudomonas acidophila and Rhodobacter sphaeroides. We observed variations (0.9-1.2 ps) of B800-850 energy transfer times at different B800 excitation wavelengths, the fastest time (0.9 ps) was obtained with 800 nm excitation. At 830 nm excitation the energy transfer to the B850 ring takes place within 0.5 ps. The m…

/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energybiologyChemistryExcitonConfiguration interactionbiology.organism_classificationSpectral lineSurfaces Coatings and FilmsRhodobacter sphaeroidesUltrafast laser spectroscopyMaterials ChemistrySDG 7 - Affordable and Clean EnergyPhysical and Theoretical ChemistryAtomic physicsAbsorption (electromagnetic radiation)SpectroscopyExcitation
researchProduct

Modeling Stator Winding Inter-Turn Short Circuit Faults in PMSMs including Cross Effects

2020

Author's accepted manuscript. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This paper presents a detailed analysis of stator winding inter-turn Short Circuit (ITSC) faults, taking the cross effects in the three phases of a permanent magnet synchronous motor (PMSM) into account by considering insulation degradation resistances. A PMSM with series coils in eac…

010302 applied physicsComputer sciencebusiness.industryStator020208 electrical & electronic engineering02 engineering and technologyStructural engineeringFault (power engineering)01 natural sciencesFinite element methodVDP::Teknologi: 500::Elektrotekniske fag: 540law.inventionInductancelawElectromagnetic coil0103 physical sciencesTurn (geometry)0202 electrical engineering electronic engineering information engineeringbusinessSynchronous motorShort circuit
researchProduct

A General Mathematical Formulation for the Determination of Differential Leakage Factors in Electrical Machines with Symmetrical and Asymmetrical Ful…

2018

This paper presents a simple and general mathematical formulation for the determination of the differential leakage factor for both symmetrical and asymmetrical full and dead-coil windings of electrical machines. The method can be applied to all multiphase windings and considers Gorges polygons in conjunction with masses geometry in order to find an easy and affordable way to compute the differential leakage factor, avoiding the adoption of traditional methods that refer to the Ossanna's infinite series, which has to be obviously truncated under the bound of a predetermined accuracy. Moreover, the method described in this paper allows the easy determination of both the minimum and maximum v…

010302 applied physicsComputer scienceconcentrated winding020208 electrical & electronic engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciTopology01 natural sciencesdifferential leakage factorIndustrial and Manufacturing EngineeringHarmonic analysismoment of inertiaControl and Systems EngineeringElectromagnetic coil0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringAsymmetrical windingdead-coil windingGörges polygonmultiphase windingsLeakage (electronics)
researchProduct

Determination of differential leakage factors in electrical machines with non-symmetrical full and dead-coil windings

2017

In this paper Gorges polygons are used in conjunction with masses geometry to find an easy and affordable way to compute the differential leakage factor of non symmetrical full and dead coil winding. By following the traditional way, the use of the Ossanna's infinite series which has to be obviously truncated under the bound of a predetermined accuracy is mandatory. In the presented method no infinite series is instead required. An example is then shown and discussed to demonstrate practically the effectiveness of the proposed method.

010302 applied physicsConcentrated windingSettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesDifferential leakage factorwindingsmoment of inertiaControl theoryElectromagnetic coil0103 physical sciencesunsymmetrical windingGörges polygonLeakage (electronics)Mathematics
researchProduct

Optical properties of GaSe, characterization and simulation

2021

Abstract The study focuses on structural and optical characterizations and properties of the GaSe lamellar material in one hand and on a numerical simulation of the photovoltaic properties of the ITO/GaSe heterojunction in a second hand. A few layers of GaSe were exfoliated from bulk GaSe on PET substrate. The optical transmission was recorded at room temperature. It shows that GaSe exhibits both indirect and direct band gaps of about 1.92 and 2.2 eV respectively. A value, as high as 104 cm−1, of the absorption coefficient was obtained. The corresponding refractive index has been determined numerically according to the Sellmeier and Cauchy models. The interesting value of absorption shows o…

010302 applied physicsCondensed Matter::Quantum GasesMaterials scienceComputer simulationbusiness.industryBand gapHeterojunction02 engineering and technologyÒptica021001 nanoscience & nanotechnology01 natural sciencesCharacterization (materials science)Attenuation coefficient0103 physical sciencesOptoelectronicsLamellar structure0210 nano-technologybusinessAbsorption (electromagnetic radiation)Refractive indexMaterials
researchProduct

Design and experimental validation of a magnetic device for stem cell culture.

2020

Cell culture of bone and tendon tissues requires mechanical stimulation of the cells in order to mimic their physiological state. In the present work, a device has been conceived and developed to generate a controlled magnetic field with a homogeneous gradient in the working space. The design requirement was to maximize the magnetic flux gradient, assuring a minimum magnetizing value in a 15 mm × 15 mm working area, which highly increases the normal operating range of this sort of devices. The objective is to use the machine for two types of biological tests: magnetic irradiation of biological samples and force generation on paramagnetic particles embedded in scaffolds for cell culture. The…

010302 applied physicsElectromagnetic fieldMaterials scienceStem CellsCell Culture TechniquesExperimental validationEquipment Designequipment and supplies01 natural sciencesMagnetic flux010305 fluids & plasmasMagnetic fieldMagnetic FieldsCell cultureDental pulp stem cells0103 physical sciencesMagnetic nanoparticlesIrradiationInstrumentationhuman activitiesBiomedical engineeringThe Review of scientific instruments
researchProduct

Inhomogeneous electron distribution in InN nanowires: Influence on the optical properties

2012

In this work, we study theoretically and experimentally the influence of the surface electron accumulation on the optical properties of InN nanowires. For this purpose, the photoluminescence and photoluminescence excitation spectra have been measured for a set of self-assembled InN NWs grown under different conditions. The photoluminescence excitation experimental lineshapes have been reproduced by a self-consistent calculation of the absorption in a cylindrical InN nanowires. With the self-consistent model we can explore how the optical absorption depends on nanowires radius and doping concentration. Our model solves the Schrodinger equation for a cylindrical nanowire of infinite length, a…

010302 applied physicsElectron densityPhotoluminescenceMaterials scienceCondensed matter physicsNanowirePhysics::Optics02 engineering and technologyElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCondensed Matter::Materials ScienceAbsorption edge0103 physical sciencesPhotoluminescence excitation0210 nano-technologyAbsorption (electromagnetic radiation)Surface statesphysica status solidi c
researchProduct