Search results for "Electromagnetic radiation"
showing 10 items of 755 documents
A Novel Method Of Measuring Light Absorption On A Self-Assembled Single Quantum Dot
2005
Abstract. We present a novel method by wich excitonic interband optical transitions within single InAs self-assembled quantum dots can be directly observed in a transmission experiment. Due to the extremely high resolution of the tecnique, individual peaks associated to single exciton absorption resonances in single quantum dots can be spectrally resolved. Using this technique we investigate the oscillator strength, homogeneous linewidth and fine structure splitting in a collection of such individual resonances.
The role of nonlinear optical absorption in narrowband difference-frequency terahertz-wave generation
2010
We present a general analysis of the influence of nonlinear optical absorption on terahertz generation via optical difference frequency generation, when reaching for the quantum conversion efficiency limit. By casting the equations governing the process in a suitably normalized form, including either two-photon- or three-photon-absorption terms, we have been able to plot universal charts for phase matched optical-to-terahertz conversion for different values of the nonlinear absorption coefficients. We apply our analysis to some experiments reported to date, in order to understand to what extent multiphoton absorption could have played a role and also to predict the maximum achievable conver…
Unusual optical properties of the dense nonequilibrium plasmas
2005
A concise overview of new optical properties of dense nonequilibrium plasma formed on the solid state target boundary is given. In this chapter, we describe phenomena such as the third harmonic generation in the skin layer, collisionless electron heating in the high frequency skin-effect regime, absorption, and reflection and transmission of radiation by a plasma with anisotropic electron distribution.
The role of synchrotron self-absorption in the late radio emission of SN1993J
2001
The standard model for radio supernovae considers that the observed synchrotron radio emission arises from the high-energy shell that results from the strong interaction between the expanding supernova ejecta and the circumstellar medium. This emission is considered to be only partially absorbed by ionized thermal electrons in the circumstellar wind of the progenitor star. Based on a study of the radio light curves of the type II supernova SN1993J, we present evidence of synchrotron self-absorption. Our modeling of the radio light curves requires a large initial magnetic field, of about 30 Gauss, and the existence of an (initially) highly-relativistic population of electrons. We also show t…
Control of the high harmonic generation spectra by changing the molecule-laser field relative orientation
2010
The time dependent Schrodinger equation of a homonuclear diatomic molecule in the presence of a linearly polarized laser field is numerically solved by means of a split-operator parallel code. The calculations are carried out by assuming a single active electron model with fixed nuclei; a simplified two-dimensional model of the system is used. The highly nonlinear response of the electron wave function to the laser electric field stimulates the molecule to emit electromagnetic radiation consisting of a wide plateau of odd harmonics of the laser field. It is shown that the emitted spectrum can be finely controlled by changing the angle between the laser electric field and the molecular axis;…
Pulse-duration dependence of the isotopic effect in simple molecular ions driven by strong laser fields
2011
In this paper we discuss isotopic effects in simple molecular ions subjected to strong laser fields. We show that the intensity of the emitted spectra strongly depends upon both the nuclear mass of the molecular ions and the laser pulse duration. In particular, for short pulse duration [up to 8 optical cycles (o.c.)], we confirm the trend described in the most studied case in which the high-order harmonic generation is more efficient for heavier isotopes; in contrast, an interesting physical phenomenon is predicted for pulses longer than 16 o.c. characterized by an inverse effect in which lighter molecular species are responsible for higher-order harmonic emission.
Chandra Observation of the Persistent Emission from the Dipping Source XB 1916-053
2006
We present the results of a 50 ks long Chandra observation of the dipping source XB 1916-053. During the observation two X-ray bursts occurred and the dips were not present at each orbital period. From the zero-order image we estimate the precise X-ray coordinates of the source with a 90% uncertainty of 0.6''. In this work we focus on the spectral study of discrete absorption features, during the persistent emission, using the High Energy Transmission Grating Spectrometer on board the Chandra satellite. We detect, for the first time in the 1st-order spectra of XB 1916-053, absorption lines associated to Ne X, Mg XII, Si XIV, and S XVI, and confirm the presence of the Fe XXV and Fe XXVI abso…
A Complex Environment around Circinus X-1
2007
We present the results of an archival 54 ks long Chandra observation of the peculiar source Cir X-1 during the phase passage 0.223-0.261. We focus on the study of detected emission and absorption features using the HETGS. A comparative analysis of X-ray spectra, selected at different flux levels of the source, allows us to distinguish between a very hard state, at a low count rate, and a brighter, softer, highly absorbed spectrum during episodes of flaring activity. The spectrum of the hard state clearly shows emission lines of highly ionized elements, while, during the flaring state, the spectrum also shows strong resonant absorption lines. The most intense and interesting feature in this …
Theoretical study of the discrete and continuum spectrum of BeH
2008
The transition intensities supplied in this Letter are directly connected with a description of the discrete and continuum spectrum of BeH. An attempt to meet our goal requires the calculation of the absorption oscillator strengths of several transitions to Rydberg states of BeH, together with differential oscillator strengths which give rise to different dipole-allowed photoionization channels from the molecular ground state. The calculations have been performed with the molecular-adapted quantum defect orbital (MQDO) approach. Predictions of new spectroscopic data on BeH at energies where high Rydberg transitions can take place, including the continuum region of the spectrum have been mad…
Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb
2017
Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed