Search results for "Electromagnetic radiation"
showing 10 items of 755 documents
Thioxanthone: on the shape of the first absorption band
2010
The equilibrium ground state geometry of thioxanthone (TX) has been investigated and its effect on the vertical excitation energies and photophysical behaviour has been explained. In line with this purpose, the first absorption band of TX has been simulated and analysed in detail. The calculations show that TX is planar, C(2v) symmetric in its ground state. The energy of the low-lying excited states seems to be rather insensitive along the butterfly motion coordinate. The shoulder in the first absorption band (at around 3.43 eV) is shown to be caused by vibrational progression of various in-plane modes and does not justify the hypothesis that two photophysically distinct conformers of TX ex…
A Metal-Free, Nonconjugated Polymer for Solar Photocatalysis
2017
Heterogeneous catalysts that can absorb light over the solar range are ideal for green photocatalysis. Recently, attention has been directed towards the generation of novel solar-light photocatalysts, in particular, metal-free polymers. Herein, it is demonstrated that a metal-free, nonconjugated, anthraquinone-based copolymer (poly[1,4-diamine-9,10-dioxoanthracene-alt-(benzene-1,4-dioic acid)] (COP)) with a strong absorption in the visible region is effective as a sunlight heterogeneous photocatalyst. As a proof of concept, it has been used to mineralize 2,5-dichlorophenol (2,5-DCP) in water under air and sunlight irradiation. The photocatalytic efficiency of COP compares well with that of …
Nonlinear optical susceptibilities of polysilanes: exciton effect
1992
Abstract Third-order nonlinear optical susceptibilities of σ-conjugated one-dimensional polymers have been calculated in a tight-binding model by taking account of the formation of excitons due to long-range Coulomb interactions. The spectrum of third-harmonic generation (THG) exhibits peaks due to excitons as well as unbound electron—hole states, in contrast to the linear absorption spectrum which is dominated by the lowest exciton state. The results are in excellent agreement with recent experiments in polysilanes not only for THG but also for linear absorption, two-photon absorption, and electroabsorption in a mutually consistent way.
The effect of disorder on optical spectra of conjugated polymers
1993
Abstract Using the semi-empirical parametrization of the Pariser-Parr-Pople model we determine the excitonic states in conjugated polymers. The employed parameters correspond to a moderate strength of the long-range Coulomb interaction. In order to take the disorder into account, the nearest-neighbour transfer matrix elements are chosen according to a random distribution. Averaging the results over a large number of chains of 100 sites, which are known to be sufficiently long so that finite-size effects become negligible, we obtain the linear and third-order nonlinear optical susceptibilities. With increasing disorder the linear absorption, the two-photon absorption and the third-harmonic g…
Symmetric naphthalenediimidequaterthiophenes for electropolymerized electrochromic thin films
2015
A new symmetric naphthalenediimidequaterthiophene (s-NDI2ODT4) was synthesized and exhibited the capability to electropolymerize alone or with EDOT affording polymers with controlled donor/acceptor monomer ratios. s-NDI2ODT4-EDOT-based copolymers showed low band gaps, wide optical absorption ranges extending to the near IR region, tuned electrical properties, thin-film surface morphology and hydrophilicity as well as high coloration efficiency in electrochromic devices.
Novel benzofulvenes-based polymers: Characterization and employment in flexible electrochromic devices
2014
Benzofulvenes-based monomers have been synthesized for the first time and have been polymerized by means of electrochemical methods onto different electrodic materials. Morphological investigation has been performed by using SEM; electrical and optical properties have been studied by means of both cyclic voltammetry, optical absorption and spectroelectrochemical techniques. Finally, solid state electrochromic devices have been fabricated. They have displayed high optical contrast.
Excitons and nonlinear optical spectra in conjugated polymers.
1992
Excitons in conjugated polymers are studied theoretically in the Su-Schrieffer-Heeger model supplemented by long-range Coulomb interactions. The relationship between exciton energies and basic interaction parameters is clarified. Linear and third-order nonlinear optical susceptibilities (two-photon absorption, electroabsorption, and third-harmonic generation) have been calculated, elucidating the significance of singlet and triplet excitons and unbound electron-hole pairs. Using only moderate interaction strength, various experiments in polydiacetylene can be interpreted in a consistent way
Conductivity and light-induced absorption in BaTiO3
1990
A charge transport model including deep and shallow traps explains both the nonlinear relation between photoconductivity and light intensity and the light-induced absorption in BaTiO3. A correlation between measurements of photoconductivity and light-induced absorption as a function of temperature yields parameters for the shallow center, among them thermal activation energy and generation rate.
1997
On the basis of an extended series of monodisperse oligomers of the dialkoxy-substituted phenyleneethenylenes 1a–i the Eqs. (3) and (4) were conceived in order to determine the limiting values of the energies Ei and the wavelengths λi of the UV/vis absorption. The convergence of the Ei, and λi values with a growing number n of repeating units permits a precise prediction of the Ei,∞ and λi,∞ values of the corresponding polymer 1j as well as a statement about the overall effect of conjugation ΔEi and the effective conjugation length ECL. A great variety of different conjugated oligomers 2–14 can be evaluated by the same algorithm.
Optical Absorption of Zinc Selenide Doped with Cobalt (Zn1-xCoxSe) under Hydrostatic Pressure
2000
Optical absorption of the diluted magnetic semiconductor Zn 1-x Co x Se (x = 0.02) has been measured at room temperature under hydrostatic pressure up to 14 GPa in a membrane diamond-anvil cell. We found two absorption features: (i) an absorption structure in the energy range 1.5 to 1.8 eV, with a negligible pressure shift (i.e. (0.45 ± 0.05) meV/GPa) which we have identified as the Co 2+ (3d 7 ) internal transition 4 A 2 (F) → 4 T 1 (P) and (ii) an onset in the energy range 2 to 2.7 eV which redshifts with pressure (dE/dP = (-8.1 ± 0.6) meV/GPa). We have attributed such absorption edge to charge transfer between the ZnSe valence band and the Co 2+ (3d 7 ) levels. On the assumption that tho…