Search results for "Electromagnetic"
showing 10 items of 1595 documents
Determination of Core Size Dependency on the EMI Suppression in Cable Ferrites
2020
Electromagnetic Compatibility (EMC) engineering should be approached via the systems approach, considering EMC throughout the design to anticipate possible electromagnetic interferences (EMI) problems. Nevertheless, an EMI source may appear when the designed device is supplied via an external power system or it is connected to another device to communicate to it. In these both cases, the cables or interfaces that interconnect the systems could represent the EMI source. Thereby, one of the most common techniques for reducing EMI in cables is the application of an EMI suppressor such as sleeve ferrite cores to them. The advantage of this solution is that it does not involve redesign the elect…
The helicoidal magnetic generator
2016
Recently helicoidal generator for the exploitation of sea wave energy has been proposed. This device can convert both the vertical and rotational movement of seawaves. The electrical energy generated by such a device must be converted and conditioned in order to match the instantaneous utility requirements and a power link from the sea to an interconnection is needed. In this paper, the authors propose a mathematical model of this device and preliminarily present a prototype of the machine.
Electromagnetic and Thermal Modelling for Calculating Ageing Rate of Distribution Transformers
2018
Prediction of the lifetime for transformers is very important for maintenance and asset management. Finite element analysis was performed on a 5 MVA distribution transformers with aluminium foil-type windings and voltage rating 6600 V/23000 V. Electromagnetic modelling is implemented on the full three-phase transformer to calculate distributed losses, taking the skin effect into account. To reduce the computational burden, the distributed losses in one phase are used to analyse temperature rise in one phase of the transformer. The temperature rise results were used to determine the ageing rate of the transformer. Further, the influence of ambient temperature and cooling on the temperature r…
Operating a cesium sputter source in a pulsed mode
2020
A scheme is presented for pulsing of a cesium sputter negative ion source by periodically switching on and off the high voltage driving the sputtering process. We demonstrate how the pulsed ion beam can be used in combination with a pulsed laser (6 ns pulse length) that has a 10 Hz repetition rate to study the photodetachment process, where a negative ion is neutralized due to the absorption of a photon. In such experiments, where the ion beam is used only for a small fraction of the time, we show that the pulsed mode operation can increase the lifetime of a cathode by two orders of magnitude as compared with DC operation. We also investigate how the peak ion current compares with the ion c…
Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticl…
2019
Metal Halide Perovskites (MHPs) have arisen as promising materials to construct cost-effective photovoltaic and light emission devices. The study of nonlinear optical properties of MHPs is necessary to get similar success in nonlinear photonic devices, which is practically absent in the literature. The determination of the third order nonlinear coefficients is typically done by the Z-scan technique, which is limited by the scattering of polycrystalline thin films. In this work, we have studied nonlinear optical properties of polycrystalline CH3NH3PbX3 (MAPbX3) thin films and colloidal CsPbX3 nanoparticles with three different bandgaps (X3 = I3, Br3, and Br1.5I1.5). Their bright generation o…
Low-temperature luminescence of catangasite single crystals under excitation by vacuum ultraviolet synchrotron radiation
2020
The luminescent properties of Ca3TaGa3Si2O14 (CTGS, catangasite) single crystals have been studied by means of the vacuum ultraviolet excitation spectroscopy utilizing synchrotron radiation from 1.5 GeV storage ring of MAX IV synchrotron facility. Two emission bands at 320 nm (3.87 eV) and 445 nm (2.78 eV) have been detected. Examining excitation spectra in vacuum ultraviolet spectral range, the 320 nm emission band was explained as the emission band of self-trapped exciton in CTGS single crystal. Its atomic structure is discussed. It is also proposed that the 445 nm (2.78 eV) emission in the CTGS is due to the F centers, which have shown a well-resolved excitation (absorption) band at 5.1 …
Rock-salt CdZnO as a transparent conductive oxide
2018
Transparent conducting oxides (TCOs) are widely used in applications from solar cells to light emitting diodes. Here, we show that the metal organic chemical vapor deposition (MOCVD)-grown, rock-salt CdZnO ternary, has excellent potential as a TCO. To assess this compound, we use a combination of infrared reflectance and ultraviolet-visible absorption spectroscopies, together with Hall effect, to determine its optical and electrical transport characteristics. It is found that the incorporation of Zn produces an increment of the electron concentration and mobility, yielding lower resistivities than those of CdO, with a minimum of 1.96 × 10 − 4 Ω · cm for a Zn content of 10%. Moreover, due to…
Comparison of the F-type center thermal annealing in heavy-ion and neutron irradiated Al2O3 single crystals
2018
Abstract The optical absorption and thermally stimulated luminescence of Al2O3 (sapphire) single crystals irradiated with swift heavy ions (SHI) 238U with energy 2.4 GeV is studied with the focus on the thermal annealing of the F-type centers in a wide temperature range of 400–1500 K. Its theoretical analysis allows us to obtain activation energies and pre-exponentials of the interstitial oxygen ion migration, which recombine with both types of immobile electron centers (F and F+ centers). A comparison of these kinetics parameters with literature data for a neutron-irradiated sapphire shows their similarity and thus supports the use of SHI-irradiation for modeling the neutron irradiation.
The ${JV}$ -Characteristic of Intermediate Band Solar Cells With Overlapping Absorption Coefficients
2017
An analytic expression for the $\textit {JV}$ -characteristic of intermediate band (IB) solar cells with overlapping absorption coefficients is derived. The characteristic contains six voltage-independent parameters that are calculated from material properties, cell properties, and external conditions. Combined with exponential functions containing the cell voltage, these describe the full $\textit {JV}$ -characteristic. Expressions are also derived for the short-circuit current and open-circuit voltage. The model represents a major simplification compared with the existing model for this type of devices. The simplicity will facilitate the understanding of the operation of such cells. Furth…
A Planar Generator for a Wave Energy Converter
2019
This article presents a permanent magnet planar translational generator which is able to exploit multiple modes of sea wave energy extraction. Linear electrical generators have recently been studied for the exploitation of sea wave energy, but, to the best of our knowledge, no synchronous planar translational generator has been proposed. In this article, to maximize the energy extraction, we have considered all the potential modes of motion due to wave excitation and included them within the mathematical model of the proposed system. The principle of operation of the generator can be summarized as follows: the moving part (translator) of the generator is driven from the sea waves and induce…