Search results for "Electron Spin Resonance"
showing 10 items of 153 documents
Increased conformational rigidity of humic substances by oxidative biomimetic catalysis
2005
A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe(TDCPPS)Cl, was employed as a biomimetic catalyst in the oxidative coupling of terrestrial humic materials. High-performance size-exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance (CPMAS-(13)C NMR), electron paramagnetic resonance (EPR), and diffuse reflectance infrared spectroscopy (DRIFT) were used to follow conformational and structural changes brought about in different humic materials by the oxidative coupling. Increase in apparent weight-average molecular weight (Mw(a)) occurred invariably for all humic substances with the oxidative polymerization catalyzed …
Liposomes modified by mono- and bis-phthalocyanines: A comprehensive EPR study.
2016
The impact of selected metallophthalocyanines, featuring diverse molecular structure, upon the fluidity of liposome membranes was studied using the spin label EPR technique. The “mono”-type MPc’s (M = Zn, Sn; Pc = C32H16N8 is the phthalocyanine ligand) and sandwich LnPc2 complexes (Ln = Nd, Sm, Gd) were explored. Liposomes were obtained in a sonication process, from egg yolk lecithin (EYL) in water. TEMPO and 16-DOXYL spin labels were used to monitor the peripheral and central part of the lipid double layer, respectively, which allowed to localize the phthalocyanine additive within the bilayer, as well as to perform independent measurements of changes in fluidity upon addition thereof. All …
Combined TL and 10B-alanine ESR dosimetry for BNCT
2004
The dosimetric technique described in this paper is based on electron spin resonance (ESR) detectors using an alanine-boric compound acid enriched with 1 0 B, and beryllium oxide thermoluminescent (TL) detectors; with this combined dosimetry, it is possible to discriminate the doses due to thermal neutrons and gamma radiation in a mixed field. Irradiations were carried out inside the thermal column of a TRIGA MARK II water-pool-type research nuclear reactor, also used for Boron Neutron Capture therapy (BNCT) applications, with thermal neutron fluence from 10 9 to 10 1 4 n t h cm - 2 . The ESR dosemeters using the alanine-boron compound indicated ESR signals about 30-fold stronger than those…
EPR/ALANINE PELLETS WITH LOW Gd CONTENT FOR NEUTRON DOSIMETRY
2013
This paper reports on results obtained by electron paramagnetic resonance (EPR) measurements and Monte Carlo (MC) simulation on a blend of alanine added with low content of gadolinium oxide (5 % by weight) to improve the sensitivity to thermal neutron without excessively affecting tissue equivalence. The sensitivity is enhanced by this doping procedure of more an order of magnitude. The results are compared with those obtained with the addition of boric acid (50 % by weight) where boron is in its natural isotopic composition in order to produce low-cost EPR dosemeters. The gadolinium addition influences neutron sensitivity more than the boron addition. The presence of additives does not sub…
Alanine blends for ESR measurements of thermal neutron fluence in a mixed radiation field
2007
In this paper, the results of a study on the electron spin resonance (ESR) dosimetry to measure thermal neutron fluence in a mixed radiation field (neutron and photons) are presented. The ESR responses of alanine dosemeters with different additives are compared. In particular, the (10)B-acid boric and the Gd-oxide were chosen to enhance the sensitivity of alanine dosemeters to thermal neutrons. Irradiations were carried out inside the thermal column of the TAPIRO reactor of the ENEA center, Casaccia Rome. The main results are a greater neutron sensitivity and a smaller lowest detectable fluence for the dosemeters with gadolinium than for dosemeters of alanine with (10)B, which is well known…
Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR
2015
The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII mon…
EPR DOSIMETRY IN A MIXED NEUTRON AND GAMMA RADIATION FIELD
2004
Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident a…
EPR dosimetry intercomparison using smart phone touch screen glass
2014
International audience; This paper presents the results of an interlaboratory comparison of retrospective dosimetry using the electron paramagnetic resonance method. The test material used in this exercise was glass coming from the touch screens of smart phones that might be used as fortuitous dosimeters in a large-scale radiological incident. There were 13 participants to whom samples were dispatched, and 11 laboratories reported results. The participants received five calibration samples (0, 0.8, 2, 4, and 10 Gy) and four blindly irradiated samples (0, 0.9, 1.3, and 3.3 Gy). Participants were divided into two groups: for group A (formed by three participants), samples came from a homogene…
In vitro free radical scavenging capacity of thyroid hormones and structural analogues.
2001
It was reported that thyroid hormones decreased Cu(2+)-induced low-density lipoprotein (LDL) oxidation in vitro. Here, we investigated free radical scavenging capacities of thyroid hormones (3,5,3'-tri-iodo-L-thyronine (T(3)), thyroxine (T(4)) and 3,3',5'-tri-iodo-L-thyronine (rT(3))) and structural analogues (L-thyronine (T(0)), 3,5,3'tri-iodothyroacetic acid (TA(3)) and 3,5,3',5'-tetra-iodothyroacetic acid (TA(4))), using three different models of free radical generation. T(0), T(3) and TA(3) slowed down production of conjugated diene and thiobarbituric acid-reactive substances during LDL oxidation by 2,2'-azobis-[2-amidinopropane] (water-soluble), whereas rT(3), T(4) and TA(4) had practi…
Shortwave Ultraviolet Persistent Luminescence of Sr2MgSi2O7: Pr3+
2023
Currently, extensive research activities are devoted to developing persistent phosphors which extend beyond the visible range. In some emerging applications, long-lasting emission of high-energy photons is required; however, suitable materials for the shortwave ultraviolet (UV–C) band are extremely limited. This study reports a novel Sr2MgSi2O7 phosphor doped with Pr3+ ions, which exhibits UV–C persistent luminescence with maximum intensity at 243 nm. The solubility of Pr3+ in the matrix is analysed by X-ray diffraction (XRD) and optimal activator concentration is determined. Optical and structural properties are characterised by photoluminescence (PL), thermally stimulated lumi…