Search results for "Electronic density"
showing 3 items of 43 documents
Isotope Shifts of Radium Monofluoride Molecules
2021
Isotope shifts of $^{223-226,228}$Ra$^{19}$F were measured for different vibrational levels in the electronic transition $A^{2}{}{\Pi}_{1/2}\leftarrow X^{2}{}{\Sigma}^{+}$. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.
Evaluation of the factors affecting direct polarization solid state (31)P-NMR spectroscopy of bulk soils
2008
Summary 31 P-NMR spectroscopy on bulk soils is a powerful tool for the identification of the different phosphorus forms in soils and for the evaluation of the dynamics of soil P. Up to now the majority of the papers dealt with liquid state 31 P-NMR spectroscopy on soluble soil organic substances. Only few papers were addressed to the study of the different phosphorus forms directly in bulk soils. In the present paper, some organic and inorganic phosphates of known structures, which are likely to be present in soil systems, were studied by direct polarization (DP) magic angle spinning (MAS) 31 P-NMR spectroscopy in order to understand the electronic factors responsible for chemical shifts of…
Hartree - Fock simulation of the Ag/MgO interface structure
1996
The atomic and electronic structure of the Ag/MgO interface are calculated using an ab initio Hartree - Fock computer code and a supercell model of a silver monolayer atop three layers of MgO substrate. The band structure, electronic density distribution and densities of states are analysed in detail for isolated and interacting slabs of a metal and MgO. The energetically most favoured adsorption position for Ag atoms is found to be above the O atoms, with the binding energy of 0.20 eV and the equilibrium Ag - O distance of 2.64 A. Neither appreciable charge transfer in the interfacial region, nor considerable population of bonds between the silver monolayer and the insulating substrate tak…