Search results for "Electroweak Interaction"

showing 10 items of 358 documents

Relaxing cosmological neutrino mass bounds with unstable neutrinos

2020

At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model ($\Lambda$CDM), the Planck collaboration reports $\sum m_\nu < 0.12\,\text{eV}$ at 95% CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe $\tau_\nu \lesssim t_U$, represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body deca…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Age of the universeFOS: Physical sciencesLambda-CDM model7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometry0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityPlanck010306 general physicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMass generationElectroweak interactionCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyBeyond Standard ModelGoldstone bosonsymbolslcsh:QC770-798High Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Higgs-Inflaton Mixing and Vacuum Stability

2019

The quartic and trilinear Higgs field couplings to an additional real scalar are renormalizable, gauge and Lorentz invariant. Thus, on general grounds, one expects such couplings between the Higgs and an inflaton in quantum field theory. In particular, the (often omitted) trilinear coupling is motivated by the need for reheating the Universe after inflation, whereby the inflaton decays into the Standard Model (SM) particles. Such a coupling necessarily leads to the Higgs-inflaton mixing, which could stabilize the electroweak vacuum by increasing the Higgs self-coupling. We find that the inflationary constraints on the trilinear coupling are weak such that the Higgs-inflaton mixing up to ord…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)cosmic inflationPhysics beyond the Standard ModelHigh Energy Physics::LatticeSTANDARD MODELFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsLorentz covariance01 natural sciences114 Physical sciencesHiggs inlationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Higgs-inflaton couplings0103 physical sciences010306 general physicsquantum field theorykosminen inflaatioInflation (cosmology)Physicsta114010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyBOSONInflatonlcsh:QC1-999Standard Model (mathematical formulation)Higgs fieldHigh Energy Physics - PhenomenologyHiggs bosonHigh Energy Physics::Experimentkvanttikenttäteorialcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Measurements of the Lineshape of the $Z^{0}$ and Determination of Electroweak Parameters from its Hadronic and Leptonic Decays

1994

Abstract: During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450000 Z0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z0 resonance. Model independent fits to the cross sections and leptonic forward-backward asymmetries yield the following Z0 parameters: the mass and total width M(Z) = 91.187 +/- 0.009 GeV, GAMMA(Z) = 2.486 +/- 0.012 GeV, the hadronic and leptonic partial widths GAMMA(had) = 1.725 +/- 0.012GeV, GAMMA(l) = 83.01 +/- 0.52 MeV, the invisible width GAMMA(inv) = 51…

Nuclear and High Energy PhysicsParticle physicsElectron–positron annihilationLEP-SLC ENERGIESElementary particle01 natural sciences7. Clean energyPartícules (Física nuclear)PHYSICSNuclear physicsBHABHA SCATTERINGParticle decay0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSLEP-SLC ENERGIES; RADIATIVE-CORRECTIONS; BHABHA SCATTERING; MASS CORRECTIONS; PHYSICS010306 general physicsDetectors de radiacióDELPHIBhabha scatteringPhysics010308 nuclear & particles physicsPhysicsDELPHI; Z0 resonance; mass corrections; radiative correctionsMathematics::History and OverviewHigh Energy Physics::PhenomenologyElectroweak interactionWeinberg angleMASS CORRECTIONSradiative correctionsZ0 resonanceHiggs bosonHigh Energy Physics::ExperimentParticle Physics - ExperimentLepton
researchProduct

Fully Differential Higgs Pair Production in Association With a $W$ Boson at Next-to-Next-to-Leading Order in QCD

2017

To clarify the electroweak symmetry breaking mechanism, we need to probe the Higgs self-couplings, which can be measured in Higgs pair productions. The associated production with a vector boson is special due to a clear tag in the final state. We perform a fully differential next-to-next-to-leading-order calculation of the Higgs pair production in association with a $W$ boson at hadron colliders, and present numerical results at the 14 TeV LHC and a future 100 TeV hadron collider.

Nuclear and High Energy PhysicsParticle physicsFOS: Physical sciencesTechnicolor01 natural sciencesVector bosonHigh Energy Physics - ExperimentNuclear physicssymbols.namesakeHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::Phenomenologylcsh:QC1-999Higgs fieldHigh Energy Physics - PhenomenologyPair productionsymbolsHiggs bosonHigh Energy Physics::ExperimentHiggs mechanismlcsh:Physics
researchProduct

Fingerprints of heavy scales in electroweak effective Lagrangians

2017

The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking $SU(2)_L\otimes SU(2)_R\to SU(2)_{L+R}$, which couples the known particle fields to heavier states with bosonic quantum numbers $J^P=0^\pm$ and $1^\pm$. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realiz…

Nuclear and High Energy PhysicsParticle physicsFísica-Modelos matemáticosHiggs PhysicsFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryFísica matemáticaPartículas (Física nuclear)lcsh:Nuclear and particle physics. Atomic energy. RadioactivityElectromagnetismoSymmetry breakingSinglet state010306 general physicsParticles (Nuclear physics)Huellas dactilares.PhysicsQuantum chromodynamics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionCromodinámica cuántica.Technicolor and Composite ModelsQuantum numberLagrangian functions.High Energy Physics - PhenomenologyFingerprints.Simetría (Física)Beyond Standard ModelChiral LagrangiansQuantum chromodynamics.Higgs bosonlcsh:QC770-798Chiral symmetry breakingSymmetry (Physics)Lagrange Funciones de.Journal of High Energy Physics
researchProduct

Heavy Higgs of the Twin Higgs models

2018

Twin Higgs models are the prime illustration of neutral naturalness, where the new particles of the twin sector, gauge singlets of the Standard Model (SM), ameliorate the little hierarchy problem. In this work, we analyse phenomenological implications of the heavy Higgs of the Mirror Twin Higgs and Fraternal Twin Higgs models, when electroweak symmetry breaking is linearly realized. The most general structure of twin Higgs symmetry breaking, including explicit soft and hard breaking terms in the scalar potential, is employed. The direct and indirect searches at the LHC are used to probe the parameter space of Twin Higgs models through mixing of the heavy Higgs with the SM Higgs and decays o…

Nuclear and High Energy PhysicsParticle physicsHiggs PhysicsHiggs particle: decayPhysics beyond the Standard ModelHigh Energy Physics::LatticeFOS: Physical scienceselectroweak interaction: spontaneous symmetry breaking01 natural sciencessymmetry: globalStandard ModelFraternal twinHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessymmetry: SU(4)twin Higgs modellcsh:Nuclear and particle physics. Atomic energy. RadioactivitySymmetry breaking010306 general physicsPhysics010308 nuclear & particles physicsGlueballnew physicsElectroweak interactionHigh Energy Physics::PhenomenologyHiggs particle: heavyHigh Energy Physics - PhenomenologyHiggs particle: mass[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Higgs particle: mirror particleBeyond Standard ModelHiggs bosonlcsh:QC770-798[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Little hierarchy problemHigh Energy Physics::ExperimentnaturalnessJournal of High Energy Physics
researchProduct

Flavour alignment in multi-Higgs-doublet models

2017

Extended electroweak scalar sectors containing several doublet multiplets require flavour-aligned Yukawa matrices to prevent the appearance at tree level of unwanted flavour- changing neutral-current transitions. We analyse the misalignment induced by one-loop quantum corrections and explore possible generalizations of the alignment condition and their compatibility with current experimental constraints. The hypothesis of flavour alignment at a high scale turns out to be consistent with all known phenomenological tests.

Nuclear and High Energy PhysicsParticle physicsHiggs PhysicsHigh Energy Physics::LatticeFlavourFOS: Physical sciences01 natural sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsMultipletQuantumPhysicsNeutral current010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyYukawa potentialHigh Energy Physics - PhenomenologyBeyond Standard ModelsymbolsHiggs bosonlcsh:QC770-798Higgs mechanismJournal of High Energy Physics
researchProduct

A 125 GeV composite Higgs boson versus flavour and electroweak precision tests

2013

A composite Higgs boson of 125 GeV mass, only mildly fine-tuned, requires top partners with a semi-perturbative coupling and a mass not greater than about a TeV. We analyze the strong constraints on such picture arising from flavour and electroweak precision tests in models of partial compositeness. We consider different representations for the composite fermions and compare the case of an anarchic flavour structure to models with a U(3)^3 and U(2)^3 flavour symmetry. Although non trivially, some models emerge that look capable of accommodating a 125 GeV Higgs boson with top partners in an interesting mass range for discovery at the LHC as well as associated flavour signals.

Nuclear and High Energy PhysicsParticle physicsHiggs bosonHigh Energy Physics::LatticeFlavourHigh Energy Physics. PhenomenologyFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHeavy Quark Physics010306 general physicsPhysicsCouplingLarge Hadron Collider010308 nuclear & particles physicsPhysicsElectroweak interactionHigh Energy Physics::PhenomenologyHiggs physicstechnicolor and composite modelsSymmetry (physics)Settore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - PhenomenologyCP violationComposite fermionBeyond Standard ModelHiggs bosonHigh Energy Physics::ExperimentHeavy Quark Physic
researchProduct

Supersymmetric type-III seesaw mechanism: Lepton flavor violation and LHC phenomenology

2013

We study a supersymmetric version of the type-III seesaw mechanism considering two variants of the model: a minimal version for explaining neutrino data with only two copies of 24 superfields and a model with three generations of 24-plets. The latter predicts, in general, rates for mu -> e gamma inconsistent with experimental data. However, this bound can be evaded if certain special conditions within the neutrino sector are fulfilled. In the case of two 24-plets, lepton flavor violation constraints can be satisfied much more easily. After specifying the corresponding regions in the minimal supergravity parameter space, we show that under favorable conditions one can test the corresponding …

Nuclear and High Energy PhysicsParticle physicsMassesPhysics beyond the Standard Model01 natural sciences0103 physical sciencesRoot-S=7 tev010306 general physicsRight-handed neutrinosPhysicsLarge Hadron ColliderElectroweak010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionFísicaNon-conservationSupersymmetrySeesaw mechanismUnificationGrand unified theoriesHigh Energy Physics::ExperimentNeutrinoModel higgs-bosonDecaysPhenomenology (particle physics)LeptonStandard model
researchProduct

On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model

2019

Abstract Making use of a dimensionally-reduced effective theory at high temperature, we perform a nonperturbative study of the electroweak phase transition in the Two Higgs Doublet model. We focus on two phenomenologically allowed points in the parameter space, carrying out dynamical lattice simulations to determine the equilibrium properties of the transition. We discuss the shortcomings of conventional perturbative approaches based on the resummed effective potential — regarding the insufficient handling of infrared resummation but also the need to account for corrections beyond 1-loop order in the presence of large scalar couplings — and demonstrate that greater accuracy can be achieved …

Nuclear and High Energy PhysicsParticle physicsPhase transition530 PhysicsSTANDARD MODELFOS: Physical sciencesSECTORParameter space114 Physical sciences3D PHYSICS01 natural scienceslattice quantum field theoryCOSMOLOGY OF THEORIES BEYOND THE SMTwo-Higgs-doublet modelHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)BARYON ASYMMETRY0103 physical sciencesEffective field theoryeffective field theorieslcsh:Nuclear and particle physics. Atomic energy. RadioactivityResummation010306 general physicscosmology of theories beyond the SMLATTICE QUANTUM FIELD THEORYPhysicsPP COLLISIONS010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyElectroweak interactionBOSONTHERMAL FIELD THEORYBARYOGENESISthermal field theoryLATTICEHigh Energy Physics - PhenomenologyCP-VIOLATIONTEMPERATURE DIMENSIONAL REDUCTIONlcsh:QC770-798EFFECTIVE FIELD THEORIES
researchProduct