Search results for "EnMAP"
showing 6 items of 6 documents
Retrieval of aboveground crop nitrogen content with a hybrid machine learning method
2020
Abstract Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-base…
Quantifying the Robustness of Vegetation Indices through Global Sensitivity Analysis of Homogeneous and Forest Leaf-Canopy Radiative Transfer Models
2019
Vegetation indices (VIs) are widely used in optical remote sensing to estimate biophysical variables of vegetated surfaces. With the advent of spectroscopy technology, spectral bands can be combined in numerous ways to extract the desired information. This resulted in a plethora of proposed indices, designed for a diversity of applications and research purposes. However, it is not always clear whether they are sensitive to the variable of interest while at the same time, responding insensitive to confounding factors. Hence, to be able to quantify the robustness of VIs, a systematic evaluation is needed, thereby introducing a widest possible variety of biochemical and structural heterogeneit…
Towards Quantifying Non-Photosynthetic Vegetation for Agriculture Using Spaceborne Imaging Spectroscopy
2021
Non-photosynthetic vegetation (NPV) has been identified as priority variable in the context of new spaceborne imaging spectroscopy missions. In this study we provide a first attempt to quantify NPV biomass from these unprecedented data streams to be provided by multiple recently launched or planned instruments. A hybrid workflow is proposed including Gaussian process regression (GPR) trained over radiative transfer model (RTM) simulations and applying active learning strategies. A soybean field data set including two dates with NPV measurements on yellow and senescent (brown) plant organs was used for model validation, resulting in relative errors of 13.4%. This prototype retrieval model wa…
Mapping landscape canopy nitrogen content from space using PRISMA data
2021
Abstract Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and upcoming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Environmental Mapping and Analysis Program (EnMAP), respectively. Moreover, the high-priority mission candidate Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is expected to globally provide routine hyperspectral observations to support new and enhanced services for, among others, sustainable agricultural and biodiversity management. Thanks to the provision of contiguous visible-to-shortwave infrared spectral data, hyperspectral missions open enhanced …
A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data
2021
The current exponential increase of spatiotemporally explicit data streams from satellite-based Earth observation missions offers promising opportunities for global vegetation monitoring. Intelligent sampling through active learning (AL) heuristics provides a pathway for fast inference of essential vegetation variables by means of hybrid retrieval approaches, i.e., machine learning regression algorithms trained by radiative transfer model (RTM) simulations. In this study we summarize AL theory and perform a brief systematic literature survey about AL heuristics used in the context of Earth observation regression problems over terrestrial targets. Across all relevant studies it appeared that…
A clustering package for nucleotide sequences using Laplacian Eigenmaps and Gaussian Mixture Model.
2018
International audience; In this article, a new Python package for nucleotide sequences clustering is proposed. This package, freely available on-line, implements a Laplacian eigenmap embedding and a Gaussian Mixture Model for DNA clustering. It takes nucleotide sequences as input, and produces the optimal number of clusters along with a relevant visualization. Despite the fact that we did not optimise the computational speed, our method still performs reasonably well in practice. Our focus was mainly on data analytics and accuracy and as a result, our approach outperforms the state of the art, even in the case of divergent sequences. Furthermore, an a priori knowledge on the number of clust…