Search results for "Endoderm"

showing 10 items of 20 documents

Centrioles Shape ERK Signaling Outcomes to Support Lung Branching

2021

Centrioles comprise the heart of centrosomes, where they organize microtubules. To study the function of centrioles in development, we genetically disrupted centrioles throughout the mouse endoderm. Surprisingly, removing centrioles from endoderm did not disrupt intestinal growth or development. In contrast, in the lung, loss of centrioles blocked branching. In lung, loss of centrioles led to apoptosis specifically of SOX2-expressing airway epithelial cells. Loss of centrioles also activated p53. Deleting p53 in mice with acentriolar endoderm rescued SOX2+ cell survival, lung branching and viability. To investigate why endoderm-wide p53 activation specifically disrupted SOX2+ cell survival,…

MAPK/ERK pathwaymedicine.anatomical_structureLungSOX2CentrioleCentrosomeApoptosisMicrotubuleembryonic structuresmedicineEndodermBiologyCell biologySSRN Electronic Journal
researchProduct

New emerging potentials for human Wharton's jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity.

2010

In recent years, human mesenchymal stem cells (MSC) have been extensively studied. Their key characteristics of long-term self-renewal and a capacity to differentiate into diverse mature tissues favour their use in regenerative medicine applications. Stem cells can be found in embryonic and extra-embryonic tissues as well as in adult organs. Several reports indicate that cells of Wharton's jelly (WJ), the main component of umbilical cord extracellular matrix, are multipotent stem cells, expressing markers of bone marrow mesenchymal stem cells (BM-MSC), and giving rise to different cellular types of both connective and nervous tissues. Wharton's jelly mesenchymal stem cells (WJ-MSC) express …

Clinical uses of mesenchymal stem cellsBone Marrow CellsBiologyRegenerative MedicineUmbilical CordImmunomodulationMesodermWharton's jellyAnimalsHumansCell LineageStem cell transplantation for articular cartilage repairCell ProliferationSettore BIO/16 - Anatomia UmanaMultipotent Stem CellsMesenchymal stem cellEndodermCell DifferentiationMesenchymal Stem CellsCell BiologyHematologyCell biologyExtracellular MatrixMultipotent Stem CellAmniotic epithelial cellsImmunologyHepatocytesmesenchymal stem cells umbilical cord Wharton's jelly differentiation hepatocyteStem cellBiomarkersDevelopmental BiologyAdult stem cellStem cells and development
researchProduct

Extended characterization of human umbilical cord matrix mesenchymal stem cells: expression of novel markers, immunoregulatory molecules, and differe…

2009

mesenchymal stem cells umbilical cord differentiation markers endoderm hepatocyte immune modulationSettore BIO/16 - Anatomia Umana
researchProduct

Systems level approach reveals the correlation of endoderm differentiation of mouse embryonic stem cells with specific microstructural cues of fibrin…

2014

Stem cells receive numerous cues from their associated substrate that help to govern their behaviour. However, identification of influential substrate characteristics poses difficulties because of their complex nature. In this study, we developed an integrated experimental and systems level modelling approach to investigate and identify specific substrate features influencing differentiation of mouse embryonic stem cells (mESCs) on a model fibrous substrate, fibrin. We synthesized a range of fibrin gels by varying fibrinogen and thrombin concentrations, which led to a range of substrate stiffness and microstructure. mESCs were cultured on each of these gels, and characterization of the diff…

fibrin substrateCellular differentiationCell Culture TechniquesBiomedical EngineeringBiophysicsBioengineeringBiochemistryregression analysisFibrinBiomaterialsMiceTissue engineeringmedicineAnimalsCell Lineagemicrostructural topologyResearch ArticlesCells CulturedEmbryonic Stem CellsFibrinTissue EngineeringTissue ScaffoldsbiologyEndodermSubstrate (chemistry)systems level modellingCell Differentiationdifferentiationembryonic stem cellEmbryonic stem cellMolecular biologyCell biologymedicine.anatomical_structureCell culturebiology.proteinStem cellEndodermGelsBiotechnologyJournal of The Royal Society Interface
researchProduct

Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain

2008

AbstractIFT172, also known as Selective Lim-domain Binding protein (SLB), is a component of the intraflagellar transport (IFT) complex. In order to evaluate the biological role of the Ift172 gene, we generated a loss-of-function mutation in the mouse. The resulting Slb mutant embryos die between E12.5 and 13.0, and exhibit severe cranio-facial malformations, failure to close the cranial neural tube, holoprosencephaly, heart edema and extensive hemorrhages. Cilia outgrowth in cells of the neuroepithelium is initiated but the axonemes are severely truncated and do not contain visible microtubules. Morphological and molecular analyses revealed a global brain-patterning defect along the dorsal–…

animal structuresBody PatterningNodal ProteinSlbNodalBiologyArticleMiceFGF8Intraflagellar transportHoloprosencephalymedicineMHB boundaryAnimalsHedgehog ProteinsRNA MessengerCiliaNodeMolecular BiologyAdaptor Proteins Signal TransducingBody PatterningGeneticsMammalsCell DeathCiliumEndodermNeural tubeIntracellular Signaling Peptides and ProteinsBrainGene Expression Regulation DevelopmentalCell BiologyEmbryo MammalianCell biologyNeuroepithelial cellGastrulationCytoskeletal Proteinsmedicine.anatomical_structurePhenotypeIFT172Gene Targetingembryonic structuresNODALBiomarkersGene DeletionDevelopmental BiologySignal TransductionDevelopmental Biology
researchProduct

Endoderm development requires centrioles to restrain p53-mediated apoptosis in the absence of ERK activity

2021

Centrioles comprise the heart of centrosomes, microtubule-organizing centers. To study the function of centrioles in lung and gut development, we genetically disrupted centrioles throughout the mouse endoderm. Surprisingly, removing centrioles from the endoderm did not disrupt intestinal growth or development but blocked lung branching. In the lung, acentriolar SOX2-expressing airway epithelial cells apoptosed. Loss of centrioles activated p53, and removing p53 restored survival of SOX2-expressing cells, lung branching, and mouse viability. To investigate how endodermal p53 activation specifically killed acentriolar SOX2-expressing cells, we assessed ERK, a prosurvival cue. ERK was active t…

p53Cell SurvivalApoptosisInbred C57BLMedical and Health SciencesArticleGeneral Biochemistry Genetics and Molecular BiologyMiceMorphogenesis2.1 Biological and endogenous factorsAnimalscentrioleintestine developmentAetiologyExtracellular Signal-Regulated MAP KinasesendodermLungMolecular BiologyCentriolesSOXB1 Transcription FactorsStem CellsEndodermapoptosisEpithelial CellsCell BiologyBiological SciencesIntestinesMice Inbred C57BLlung branchingERKembryonic structuresTumor Suppressor Protein p53Microtubule-Associated ProteinsDevelopmental BiologyDevelopmental Cell
researchProduct

Villification: How the Gut Gets Its Villi

2013

Intestinal Villus Formation The intestinal villi are essential elaborations of the lining of the gut that increase the epithelial surface area for nutrient absorption. Shyer et al. (p. 212 , published online 29 August; see the Perspective by Simons ) show that in both the developing human and chick gut, the villi are formed in a step-wise progression, involving the sequential folding of the endoderm into longitudinal ridges, via a zigzag pattern, to finally form individual villi. These changes are established through the differentiation of the smooth muscle layers of the gut, restricting the expansion of the adjacent proliferating and growing endoderm and mesenchyme, generating compressive …

MesenchymeXenopusLongitudinal ridgesMorphogenesisChick EmbryoBiologyModels Biologicaldigestive systemArticleMesodermMiceSmooth musclemedicineMorphogenesisAnimalsHumansMultidisciplinaryta114ExtramuralEndodermdigestive oral and skin physiologyMuscle SmoothAnatomyEpitheliumCell biologyGastrointestinal Tractmedicine.anatomical_structureNutrient absorptionEndoderm
researchProduct

Electron Microscopic Studies of Spruce Needles in Connection with the Occurrence of Novel Forest Decline.

1988

Needles of four spruce trees showing different degrees of novel kinds of forest decline were investigated by electron microscopy. Green needles appearing at least superficially still intact were selected for the present investigation. Most of the mesophyll appeared to be undamaged. However, groups of atypical mesophyll cells were found close to the endodermis or the hypodermis. The chloroplasts of the apparently damaged cells were particularly affected. Changes in the matrix of the chloroplasts, i.e,. increased affinity to osmium, occurrence of extensive nests of plastoglobuli, as well as damage to the membranes, i.e. lesions in the envelope and abnormal thylakoid membranes, were observed. …

PhysiologyMembrane structurePlant ScienceBiologyMatrix (biology)law.inventionChloroplastMembranelawThylakoidBotanyGeneticsBiophysicsEndodermisElectron microscopeAgronomy and Crop ScienceCellular compartmentJournal of Phytopathology
researchProduct

Chloramphenicol effects on adventitious root production by radish hypocotyls

1990

Abstract The excision of the root accelerates greatly the formation of adventitious roots in the hypocotyl of etiolated radish seedlings, but if the seedlings develop in CAP 1×10−4M, no adventitious root are induced after cutting. IAA either alone or associated with CAP, significantly increases the number of primordia in normal hypocotyls if given at the moment of cutting, while it has not stimulatory effect on the hypocotyls of seedlings grown in CAP. IAA has significant effect on both elongation and tickening of hypocotyl segments prepared from seedlings grown in CAP, and this could indicate a specific action of the inhibitor either on a particular process or on particular cells. The endo…

chemistry.chemical_classificationChloramphenicolfungifood and beveragesPlant ScienceBiologyHypocotylPericyclechemistryAuxinEtiolationBotanymedicinePrimordiumEndodermisElongationEcology Evolution Behavior and Systematicsmedicine.drugGiornale botanico italiano
researchProduct

Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress

2021

Abstract Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy‐based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pis…

Plant ScienceBiologyBiochemistry Genetics and Molecular Biology (miscellaneous)salinity tolerancePistacia integerrimasuberizationSuberinExodermispistachio rootstockEcology Evolution Behavior and Systematicsvacuolar sequestrationEcologyPistaciaexodermisfungiBotanyXylemfood and beveragesbiology.organism_classificationendodermisSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeSalinityHorticultureQK1-989EndodermisRootstockendodermis exodermis pistachio rootstock salinity tolerance suberization vacuolar sequestrationPlant Direct
researchProduct